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ROOTS OF POLYNOMIALS BY RATIO OF SUCCESSIVE  DERIVATIVES 

by James E. Crouse  and  Charles W. Putt 

Lewis  Research  Center 

SUMMARY 

Computer  programs  for  finding  roots of polynomials often give  unsatisfactory an- 
swers  where  roots  relatively  close  together are encountered.  This  difficulty  to a large 
extent  can  be  avoided with a procedure  utilizing  ratios of successive  derivatives.  The 
specific  information  gained  from  the  ratio of successive  derivatives is the number of 
roots at the  root point approached  and  the  approximate  location of a trail point with re- 
spect to  the closest  root.  The  location  approximation  improves as a root is approached 
so  a powerful  convergence  procedure  becomes  available. 

Equations a r e  developed  in  this  report  for  the  general  case of polynomials with com- 
plex  number  coefficients.  Stepwise  procedures are given for obtaining accurate  roots 
for  the  general  case.  These  principles  are  developed into a computer  program which 
finds  the  real and  complex  number  roots of polynomials for  the  special  case of real  
number  coefficients. Some examples are shown to  illustrate the  root  resolution  capabil- 
ity of the  program. 

INTRODUCTION 

High-speed  computing has  made  some  formerly  laborious  mathematical  procedures, 
such as solving  for the roots of rather high degree  polynomials,  somewhat  more  prac- 
tical  for  broad  engineering  application.  Before  the  prominence of computers  the  solu- 
tion of high degree  polynomials  for  roots  had  an  element of art to  complement  the sci- 
ence.  The  solution of general  polynomials on computers,  however,  requires  completely 
logical  steps. Many methods  have  been  developed  and  programmed  for  general  use 
(e. g.,  refs. 1 and 2). Almost all of these  programs  use  iterative  procedures  and re- 
quire  the  evaluation of the polynomial at each trial root.  Most of the  programs  work 
well  for  the  vast  majority of cases;  however,  they  usually  either  compute  an  inaccurate 
solution or  fail to  converge  to a solution  for  some  root  combinations.  These  difficulties 
a r e  usually  caused  by  multiple  roots at a point or by two or more  very  close  roots. 



Since roots are defined as the  points  for which a polynomial  equals  zero,  iterative 
root finding techniques  search  for  points  that  give a polynomial  value of zero. When 
r'oots a r e  not close  together a polynomial  will  have  significant  slope at a root; so  a tol- 
erance of the  closeness of the polynomial  to zero  can  be  and  effectively  is  used as a 
root  criterion. However,  when roots are very  close  together  or when multiple  roots 
occur at a point, the  polynomial  approaches  these  roots at very  nearly  zero slope.  With 
these low slopes,  very  poor  root  resolution  capability is possible with a polynomial- 
equal-zero  tolerance  criterion. And in  some  cases,  programs  fail to  converge at all. 
In most  cases of failure, either  the  polynomial  cannot  be  evaluated  near a root with suf- 
ficient  accuracy or  the  polynomial  value  over  large  domains of the  complex  plane is 
outside the range of numbers  representable on a computer.  Thus, it appears that knowl- 
edge about the  relative  closeness of the  approached  root  to  other  roots  is needed for 
more  comprehensive  root finding computer  programs. 

Polynomial  derivatives  give a clue as to  the  nature of the root  or  roots  approached. 
Zn fact,  the  ratios of successive  polynomial  derivatives  give  the following very  useful 
information: (1) the  multiplicity of a root; that is, the  number of roots at the  root point 
approached, (2) the  closeness of a trial point to  the  root  approached,  and  (3) a good ap- 
proximation as to  where  the next nearest  root is when at a root.  Thus,  an  approach 
using  the  ratios of successive  polynomial  derivatives  offers  the  possibility of accurate 
roots-of-polynomial  computer  programs with very high reliability. 

In this  report  the  general  principles of what can be learned  from the ratios of poly- 
nomial  derivatives  (including  polynomials with complex  number  constants) is presented 
and  discussed.  Then  these  principles are used  in a computer  program which finds  the 
roots of polynomials  for  the  special  case of real number  coefficients.  The  program is 
included  in  the  report  along with examples of input,  output, and  resolution  capabilities. 

DEVELOPMENT OF THE GENERAL METHOD 

General  Procedure 

In the following development of equations,  the  polynomial is assumed  to  be of the 
general  form.  (Symbols are defined  in  appendix A. ) 

P(z) = a. + alz + a2z + a3z + . 2 3 . .  + a.zJ + . . 
J . anz n 

where the variable  z and  the  constants a for j = 0 to  n  are complex  numbers  in the 
general  case.  The  polynomial in terms of its  roots  can  be  written as 

j 

P(z) = (Z - bl)(z - b 2 ) ( ~  - b3) . . . (Z  - b-)  . . . (Z - bn) 
J (2) 
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Equations (1) and (2) are always  analytic.  Thus, a derivative  always  exists,  and it has 
the  same  value at a point  independent of the  direction of approach. 

The first derivative of equation  (2) is 

P'(z) = ([(z - b2)(z - b3) . . . (z - bn)] + k z  - bl)(z - b3) . . 

+ . . . + [ (z - bl)(z - b2) 

The first derivative  ratio is formed by  dividing  equation (3) by  equation  (2); the  re-  
sult is 

Equation (4) has  n  terms,  but  note  that as a root is approached a few or  usually only 
one term wil l  predominate. If only one term  predominates,  equation (4) can be approxi- 
mated  by 

a t  a trial z in  the  vicinity of b  Equation (5) then  can  be  solved  for b to  give a much 
closer z approximation  to  the  root  in  the  next  iteration. As z gets  closer  to b the 
predominance of the  one term  in equation (4) becomes  increasingly  outstanding.  Thus, 
it  is possible  to  close  in on the  root point very rapidly. 

j' j 
j' 

The  value of knowing z - b near a root  has  been  indicated;  but so far, only the 
special  case of a point near a single  root  has  been  covered. For the  general  case of 
arbitrary z in P(z), z may not be  relatively  close to any  one  root point so  no  one 
term  in equation (4) predominates.  Another less common  possibility is the  nearest  root 
point may  have  multiple  roots m, so that m terms in  equation (4) sum  to m/(z - bj). 
Thus, for general  analysis, f l  can be  expressed as 

j 

where b. is the  closest  root,  m is number of roots at b and g1 is the  sum of the 
rest  of the  terms,  (n - m),  in  equation (4). Information  about m and g1 is needed 
before a value of b.  can be calculated  from  equation (6). 

1 j' 

J 
More  information  about  m  and g1 can be obtained from  equations involving higher 

order  derivative  ratios.  The  development of these  equations,  however,  becomes more 
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complicated as the  order of the  derivative  increases; so the  stepwise  derivations  through 
.the  fourth  derivative are shown in  appendix B. Particular  equations  developed  there will  
be  drawn  into  the  text as needed. 

The  second  derivative  ratio  (eq. (B10)) is 

m 
+ 81 z - bj 

This is another  equation  in m, gl,  and a new variable g2, which is a summation of 
te rms  of the  form  l/(z - b.) for all b. values  exclusive of the  nearest  root  points. 
The  introduction of the new variable  indicates that more  equations of this  type will not 
give a set that can  reasonably be solved  in a direct  mathematical way. Much implicit 
information,  however,  can be obtained from  an  order of magnitude  study of the terms 
in  the  derivative  ratios. 

2 
J J 

Order of Magnitude  Studies of Derivative  Ratios 

Let  us begin  by  observing what happens to  the first and  second  derivative  ratios 
(eqs. (6) and (7)) as a single  root  (m = 1) is approached. First note  that as z -c b.  in 
equation (6), P'(z)/P(z) - fm. 

Now consider  equation (7). The first term  in  the  numerator is zero  since m = 1. 

J 

As z - b., equation (7) essentially  reduces  to 
3 

z - bj 

Thus, as z - b. for  m = 1, the  second  derivative  ratio  approaches 2g1, which will be 
virtually a constant  for  small z changes  near b.. Consequently, for  m = 1, the first 
derivative  ratio  increases in  magnitude  rapidly  and  the  second  derivative  ratio  ap- 
proaches 2gl as z - bj. 

fo3 as z - bj.  But,  in  this  case  equation (7) essentially  reduces  to 

3 
J 

Now let  us  consider  the  case of m > 1. The first derivative  ratio still approaches 
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Thus  the  second  derivative  ratio  also  approaches foo as z - b. for m > 1. In fact, 
the  ratio  between  the  magnitude of the  second  and first derivative  ratios is (m - l)/m 
for m > 1. 

1 

At this point the  third  derivative  ratio is lifted  from  the  appendix  (eq. (B15)) to show 
the following pattern  that is developing: 

P"(z) 

Consider  the  case of m = 2. As z - b.  equation (101 essentially  reduces  to 
J 

A s  z - b. for m = 2, the  third  derivative  ratio  approaches 3g1. If m > 2, 
P'"(z)/P"(z) = (m - 2)/(z - b.) as z - . 1 

J b j  
Analysis of higher  derivative  ratios  confirms  the  pattern  indicated  previously.  The 

following generalizations  can  be  made as z  approaches b 
j .  

(1) The  constant  approached  by  the  m + 1 derivative  ratio is (m + l)gl. 
(2) Pk+'(z)/Pk(z) - (m + 1 - k)/(z - bj) - 0 for 1 s  k s  m, so  the  number of 

derivative  ratios  that  approach fco is the  number of roots m  that a r e   a t  b 
(3) For  m > 1 m d   a n  integer k in  the  range 1 c k 5 m, 

1. 
[IPk+'(z) I/lPk(z) I]/l Pk(z)  1/\Pk-'(z) 1- (m - k)/(m + 1 - k) where  the  absolute  value 

symbols  mean  the  magnitude of the  vector  sum of the  real and  imaginary  parts when 
P(z) is complex. 
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These  generalizations show how to  interpret  derivative  ratios  for  m  and  gl as a 
root is approached. When at a trial point near a root,  however, it is not easy  to tell if 
a derivative  ratio is approaching a constant  or infinity. The  ratio of successive  deriva- 
tive ratios, as partially  introduced  in  generalization (3), is useful  for this  purpose. 
For a general  integer k let us  call  this  ratio ARATIO as it is in the computer  program 
described  in a later section of the  report; then, 

P k + l ( Z )  

ARATIO = pkw 
Pkh, 

pk- l( 2) 

From  generalizations (1) and (2) when k = m, 

Pm+l( 2) 

Prn(z) 

P" - 1( 2) 

ARATIO = pm(z) - (m + l)gl(z - bj) - 0 as z - bj 

From  generalization  (3), ARATIO - (m - k)/(m + 1 - k) for 1 1 k < m; thus, when k 
is a positive  integer less than  m, 1 ARATIO I - C where  the  constant  lies  in  the  range 
0. 5 5 C < 1 and when k = m, IARATIO I - 0. At a trial point in  the  vicinity of a root, 
the zero  may not be  very  distinct;  but  any ARATIO I value  less  than 0. 5 is an  indica- 
tion  that  the ARATIO associated with the  particular k is headed for  zero.  The  par- 
ticular k can  then  be  used as the current  value of m. 

The  values of m  and  gl  obtained  from a t r ia l  point provide  the  means of calculat- 
ing z - b in equation (6) for  the  general  case of several  roots at a point. However, a 
more  direct way is by  equation (13) 

j 

where  m is both the  order of derivative  and the multiplicity of the  root. An excellent 
characteristic of these  calculated  z - b.  values is that  they  become  increasingly  accur- 
ate as a root is approached.  They a r e  a powerful aid in  converging  to a root  and in es- 
tablishing a very  accurate  value  for a root.  The  reason  for  better  z - b, values as z 

6 
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approaches b. is the  major  terms  in  the  ratio of derivative  equations  become  increas- 
ing orders of magnitude larger than  the  terms ignored. 

l 

Limitations in Practical  Applications 

The preceding  theoretical  observations are useful only to the  extent that they  can 
be  applied  within  the  limitations  encountered  in  practical  work.  For  finding  roots of 
polynomials  the  limitations are not severe; but they  do  exist;  and  they merit  discussion. 
Almost all of the  limitations a r e  a result of the number of significant  figures  that  can be 
carried for a constant or  variable on the  computer. 

The  basic  constants  and  initial  parameter  values  that are input to  the  computer  have 
a round off e r ro r  in the last significant  figure.  As  mathematical  manipulations are 
made on the computer these round off e r ro r s  and  other  process  errors  make  the  prob- 
able relative  error of calculated  parameters,  such as, P(z) and its derivatives, larger. 
For meaningful ratio of derivative  analysis it is necessary  to  recognize when the e r r o r  
of a computed  value  can  be as large as the  parameter  itself. A  relative error  cri terion 
can be established  for  the  polynomial  derivatives  from  an error  analysis study. 

The  number of significant  figures that can be carried on a computer  and the relative 
error  criterion  in  essence  establish  the  maximum  size of a single meaningful  derivative 
ratio. However, the judgment on the multiplicity of a trail root is made  with ARATIO 
which has two derivative  ratios.  Thus, it is necessary  to have two reasonably  accurate 
derivative  ratios. Since, as indicated  in  the  earlier ARATIO discussion,  both of these 
derivative  ratios  may be approaching infinity, the  maximum  allowable size of a deriva- 
tive  ratio  for the purpose of determining  m is about  the  square  root of the  maximum 
size of a single  meaningful  derivative  ratio;  that is, about  one-half the  meaningful  sig- 
nificant figures of a calculated  derivative.  This  limit on the  magnitude of a derivative 
ratio  for  the  determination of m  in  essence  establishes the minimum  distance  for which 
a computer  program  can  resolve  nearby  roots  rather  than treat them as a multiple  root. 
As  indicated  by  equation (13), this minimum  resolution  distance  for a nearby pair of 
roots is the  inverse of the  derivative  ratio. 

When a pair  of root  points are resolved, the e r r o r  of the root  point b. is of the 
order of magnitude of the resolution  distance.  Usually  the e r r o r  of b can be reduced 
several  orders of magnitude  by  using  equation (13) for one more  iteration  to obtain b 
with the  m  established  in  resolution.  The  least  improvement  in  accuracy is made if a 
pair of roots  are  the  resolution  distance apart. If a pair of roots are greater than the 
resolution  distance  apart, the order of magnitude of root  location e r r o r  reduction is the 
ratio of resolution  distance  to the distance  between  the  root  pair. If a root  pair is l e s s  
than  the  resolution  distance apart, they are treated as a double  root at the centroid of 
the  root pair. 

J 
j 

j 
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Whereas a pair of nearby  roots  can  by  resolved  to a known accuracy,  the  resolution 
of clusters of nearby  roots cannot be  described as precisely.  The  approximate  resolu- 
tion  distance of an evenly  spaced  group of roots  m on a circle  in  the complex  plane is 
the  number of meaningful  significant  figures of a computed  derivative  divided  by  m. 
For example, if a computer  has  16-significant-figure  capability, it may  be  possible  to 
retain about  14  significant  figures in a polynomial  derivative  value of a tenth-degree 
polynomial.  With  four  evenly  spaced  roots,  the  resolution  distance would be only three 
and a fraction  significant  figures.  The  ratio of derivatives method,  however, is most 
useful when closely  packed  clusters of roots or  a multiroot point is encountered. h the 
approach  to  such a group of roots  the polynomial appears  to  approach a high ordered 
zero  or  multiple  root; so the  actual  value  P(z)  stays well below the  absolute e r r o r  as- 
sociated with a computed  value of P(z)  for a range of z. h the  case of an  actual  multi- 
root point each of the  m - 1 derivatives  approach a lower  order  zero.  Thus, it may 
not be possible  to  evaluate  P(z)  and its lower  derivatives,  but it works out nicely that 
the  derivative  ratios  needed  for  root  resolution  (determination of m)  are  the  ones that 
can be calculated  accurately. In fact,  the  advantage of the  derivative  ratio method  over 
other  methods is that  root  analysis  can still be done  even  though  the  polynomial  and its 
lower  order  derivatives  cannot  be  evaluated with sufficient  accuracy. Upon near  range 
approach  to a cluster, individual roots can  usually  be  resolved;  but  in the cases  where 
resolution  cannot  be  made  the  remaining  group is treated as a multiroot  located  near 
the  centroid of the  group. 

, 

Summary of the  Algorithm 

The  major  features of the ratios of derivative  method  have  been  discussed  at  some 
length. In the  following  stepwise  procedure  the ideas are summarized as they  might be 
used  to find roots of polynomials: 

(1) Find a trial z  for which P(z) is in the  vicinity of zero.  The  ratio of deriva- 
tives method  usually  works  for  this,  but it may not be  either  efficient enough or reliable 
enough for a general  program. It may  be  advisable  to  use  some  standard  form of two- 
or  three-term  Taylor's  series expansion of the  polynomial  for th i s  phase. 

(2) When in  the  vicinity of a root  evaluate  the first derivative  ratio,  P'(z)/P(z)  to 
determine  the  approximate  location of the  root.  P'(z)/P(z) is an  order of magnitude 
measure of the  closeness of z  to b 

j '  
(3) Find P"(z)  and  calculate  P"(z)/P'(z).  From  equation (12), if P"(z)/P'(z) is 

greater than  one-half of P'(z)/P(z),  there is a multiple  root or at  least two roots within 
l/[P'(z)/P(z)] of each  other so  that  they  cannot be  resolved  yet.  eontinue  taking  deriv- 
ative  ratios, P (z)/Pkm1(z),  until one is found which is less than  one-half the  next  lower 
order one. The  current  multiplicity  m of the  root b. is k - 1 where P (z)/Pk-l(z) 

8 
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is the first derivative ratio that is less than one-half of the  next  lower  order  derivative 
ratio. As a group of roots is approached, it may be possible  to  resolve  roots  that looked 
€ike  multiple  roots  from a distance;  consequently,  m  may be lowered  during  the  z 
trials. 

(4) Adjust z with the  following  relation: 

As a root is more  closely  approached,  this  correction  becomes better by orders  of mag- 
nitude. If a multiroot point is approached in iterating,  the  values of P(z)  and  lower 
order  derivatives  approach high order  zeros.  Thus, it may not be possible  to  get  values 
for  them,  but  the  higher  derivatives  can  be  evaluated  for  m  and  the  z  adjustment. 

(5) Locate  z within a tolerance of about one-half the  order of magnitude of the  root 
resolution  criterion. For the  purpose of resolving  nearby  roots, two successive  deriv- 
ative  ratios which a re   f r ee  of round off or truncation e r r o r s  are needed. Thus, a root 
resolution  criterion of about one-half the  significant  figures  that  can  be  retained  in a 
calculated  derivative  ratio  should be used. If a z  value is apparently  closer  to b  than 
the  criterion  range, it should be backed away until  in  the  criterion  range. 

j 

(6)  After  z is in  the  root-resolution  criterion  range,  calculate  gl  from 

and  improve  the  value of b When P"(z)/Pm+l(z) is f ree  of round off or truncation 
error,  the  error  in  b.  can  usually  be  reduced by several   orders of magnitude  with 

j. 
J 

(7) Divide  the  roots  out of the  polynomial.  The  order of the 
duced from n to  n - m. 

(8) Estimate  the  location of the next  root.  The  value of gl 

gl=-+- 1  1  1 + .  . . + 
z - b l   z - b 2  z - bn-m 

polynomial wil l  be re- 

is very  nearly 



E another  root is relatively  close  to  the  root  just found, one term  in  equation (17) should 
predominate. A rough  approximation of the  initial  b.  can  then  be 

3 

These  general  steps  were  used  in a computer  program  for finding the  roots of poly- 
nomials with real  coefficients. A computer  program  for only real  number  polynomials 
rather  than  the  general  case of complex  number  polynomials is discussed  for  three rea- 
sons. First, far more real number  polynomials are used in practical  applications. 
Second, a computer  program  specifically  constructed  for only real number  polynomials 
requires  somewhat fewer computer  operations and, thus, is more  efficient  for  the bulk 
of problems. And third,  discussion of a real number  polynomial  program  may  more 
fully  illustrate  the  application of the  ratio of derivatives  concept  since  almost all of the 
logic  needed  for  the  general  case,  plus that specifically  for real roots, is used. 

DESCRIPTION OF THE COMPUTER PROGRAM 

From both accuracy and  efficiency  considerations it is advantageous  to  structure a 
program  to  do as much  analysis  in real number  algebra as possible.  The  reason is that 
fewer  computer  operations  are  required  for real number  computations  than  for  complex 
number  computations.  Thus,  this  program  makes a thorough  search  for all real  roots 
first; so that the  polynomials a r e  often reduced  in  degree,  and  hence length, before 
complex  number  algebra is needed.  The program  can  be  considered  to be composed of 
two parts, one with real algebra  operations and the other with complex  number  opera- 
tions.  The  major  features of each are discussed. 

Program Segments Coded in Real Number  Algebra 

Most of the  real  number  operations are done in  the  main  program, ROTS,  which 
also  serves as the  control  routine.  The  remaining real number  operations  are done in 
subroutines which a r e  mentioned  by  name at appropriate  places  in the  discussion. 

Preliminary  calculations. - At first a check of the input data with the  dimension 
limits is made.  Then some  tests  for  easy  reduction of polynomial  degree are made. If 
the  highest  degree  coefficient is zero,  the  polynomial  degree is lowered by one. The 
test is repeated  until a nonzero  coefficient is found. The  same  type of test  also is made 
at the low degree end of the polynomial. A root  value of zero is associated with each 
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zero coefficient on the low degree end. Thus,  the  roots  equal  to  zero are immediately 
accounted  for,  and  the  polynomial  degree is reduced without further ado. 

One other  calculation of a preliminary  nature is a possible  gross  scaling of the 
polynomial.  Scaling makes  the  root  resolution  criterion a fraction of average root size 
instead of a fixed  absolute  value.  The  scaling is done  by  hexadecimal orders of magni- 
tude. Hexadecimal  scaling is used  since no  additional  error is introduced  into  the poly- 
nomial  coefficients with computer  multiplications  and  divisions  by 16 on present  com- 
puters. A scaling  decision is made  from a least-squares  line fit of hexadecimal 
logarithms of the  polynomial  coefficients. If this  line  has a slope  between +O. 5 and -0. 5, 
no gross  scaling is done. 

Polynomial  and  polynomial  derivative  calculation  procedure. - The  real  number 
polynomial  can  be  written as 

~ ( x )  = alxn + a2xn-l + . . . anx + an+l 

where  the a's a r e  now real numbers indexed from  the high degree end of the  polynomial. 
Indexing the  polynomial  coefficients  in  this  manner  conforms  to  the  order they a r e  input 
in  the  program. 

To  qualitatively  judge  the  nearness of a polynomial  to a root,  it   is  desirable  to  nor- 
malize  equation  (19).  Thus, it could be  rewritten as 

where  the  term  in  braces is normalized  to one. As a root is approached,  the  term  in 
braces  approaches  zero;  but its value i s  meaningful only when above  the  absolute e r ror  
for  the  calculated  value of P(x).  The  absolute  error of the  term  in  braces, of course, 
grows with degree of the polynomial. For a tenth-degree  polynomial the absolute  error 
can  be  expected  to  be  approximately two orders of magnitude greater  than  the  absolute 
e r ro r  of the  same input number. If the first roots found a r e  somewhat  isolated,  their 
relative  error will be  almost as good as that of P(x). In the  process of dividing out a 
root,  additional  error is introduced  into  the  remaining  polynomial  coefficients.  Thus, 
even though the  polynomial  gets  shorter,  the last roots,  in  general,  have  greater  rela- 
tive  error. When the  roots  are all relatively  isolated  from  each  other,  the  root  values 
are  certainly  accurate enough for  engineering  applications  (see  examples in  appendix C). 

However, when several  roots lie at a point or a r e  clustered,  the  resolution is not 
as good as with isolated  roots;  consequently,  the  accuracy of such  roots is not as good 
either. Unfortunately, when polynomials  have  multiple  roots or clusters of roots,  the 
relative  error of P(x)  usually is higher too. The  reason is believed  to  be a function of 
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the  relative  size of the  polynomial  coefficients.  For  illustration,  note  that a polynomial 
of multiple  roots  can be written as (x - a)n. As n  increases  the  center  coefficients of 
the binomial  series  expansion of (x - a)n becomes  orders of magnitude larger  than  the 
end coefficients.  Another  difficulty with binomial  series  coefficient  polynomials is there 
are terms  nearly  equal  in  magnitude  but of opposite  size.  Consider,  for  example, 
(x - 1)5 = x 5  - 5x + lox3 - lox + 5x - 1. Note that as x  approaches 1, lox3 ap- 
proaches  lox2 and the  resulting  sum will  have few significant  figures.  Table I illus- 
t ra tes  how small  the  value of this  polynomial is in  the  vicinity of its multiple  root. 

4 2 

For  the  purposes of illustration,  table I1 shows how the  finite  precision of a com- 
puter  makes it impossible  to  locate  multiple  roots  accurately if the  polynomial  equals 
zero  criterion is used.  Even using  ten  significant figures in the evaluation of the poly- 
nomial, the value of x = 0.999 will be  accepted as a root.  Thus, a ten-significant- 
figure  calculation  does not even  yield a three-significant-figure  root.  Furthermore, 

TABLE II. - EVALUATION OF THE POLYNOMIAL 

(x - 1) a t  x = 0.999 

(a) Using infinite  precision 

5 

TABLE I. - VALUES OF THE 

POLYNOMIAL (x - 115 AT 

VARIOUS x 

p(.) = (x - 115 = x5 - 5x4+ lox3 

IAnXn .999  4.995 . "~ I i I -I, I .998 001 I -9.980 01 
.997  002  999 9.970  029  99 
.996  005  996  001 -4.980  029  980  005 
.995  009  990  004  999 .995  009  990  004  999 

- 

.99 

.999 

P( x) 

0.00032 
. 0000 1 
. 000 000 449 
. 000 000  000 000 001 

I n=O 

(b) Truncating  to  ten  significant  figures 

.999 I j I -!! 1 .998 001 

.997  002  999 

.996  005  996 0 

.995  009  999 00 I Anxn 
- 

~ ~~ 

-1.0 
4.995 
-9.980  01 
9.970  029  99 
-4.980  029  980 
.995  009  990 0 

.~ ~- ~ ~ .. 

5 
p(x) = Anxn = 0.000 000 000 0 

n=O 
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after dividing out the  root,  the  coefficients of the  reduced  polynomial will have at most 
three  significant  figures. 

Again for  illustration  the following table  shows  the  buildup of e r ro r  as each new root 
- is found with less  accuracy  than  the  preceding root: 

x1 = 1.0063 

x2 = 0.9985 + 0.0061 i 

x3 = 0.9985 - 0.0061 i 

X4 = -4.9015 - 0.7623 i 

X5 = -9.4521 

The polynomial, (x - 1) = x5 - 5x + lox3 - lox + 5x - 1, was input to a computer  pro- 
gram  using  Laguerre's method for finding roots.  The  program  utilizing eight significant 
figures  in its calculation found the  first root to about three  significant  figures.  The next 
two roots  were  also  located  to  about  three  significant  figures but were  reported  to  be 
complex  instead of real.  The last two roots  are not even accurate  to within one signifi- 
cant  figure. However, the  accuracy  and  internal  checks within the  program  were satis- 
fied and the  program  reported no error  message indicating  the  roots  were bad. The only 
indication of trouble is the  appearance of a complex  root without a conjugate. 

5 2 2 

Even with the  derivative  ratio  program,  it is better  to  use  the  most  accurate  calcu- 
lation  procedure known for  the  calculation of P(x)  to  retain as much  resolution  capability 
a s  possible. 

An alternate method of evaluating  P(x) is the following form: 

The  epsilon,  delta error  analysis method of reference 3 applied  to the previous  forms 
for  evaluating  the  polynomial  P(x)  shows  that  the  latter  form is probably  the  more  ac- 
curate when clusters of roots are encountered,  even though there  are  more  operations 
used. Part of the  reason is that  no  additional  absolute  error is introduced  in  the  addi- 
tions of the  exact  constant one. For a fifth-degree  root  the  relative  errors of P(x)  com- 
putations  by  equations (20) and (21) are  the  same;  but  for a tenth-degree  root  the  relative 
e r ro r  of P(x)  computed  by  equation (21) is about 5  percent less than  that of equation (20). 
There is some  question as to  whether  this is enough difference  to  warrant  the  use of the 
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latter form;  but it was used  in  the  program  since  the  overall  program is generally  quite 
fas t  and  efficient. 

Equation (21) cannot be  used  directly,  however,  because a zero coefficient  gives  the 
division-by-zero  problem.  This  problem can be handled, in general, by checking  the 
magnitude of each  coefficient with some  tolerance which should  be  about  the  absolute 
e r ro r  of other  polynomial  coefficients. If some  polynomial  coefficients a.'s a r e  below 
the  tolerance, the principle  illustrated  by  equation (22) can  be  used  to  evaluate  P(x)  in 
the following way: 

1 

Derivatives of P(x)  also  are  polynomials, so  the  preceding  equation  forms  are  ap- 
plicable  for  them too. Calculation of the  derivatives is simply a matter of setting up the 
derivative  coefficients  and  adjusting  the  degree of the  polynomial.  The  calculation of a 
polynomial  and its derivatives, with x  the only independent  variable, is the  specific 
function of subroutine RPOLY. At any point x  during  iteration  P(x),  P'(x),  and  P"(x) 
always a r e  calculated.  Higher  order  derivatives are calculated only if the  ratio of de- 
rivatives  segment of the  program  has a need for them. 

Approximate  root  location with second  order  Taylor's  series. - A second  order 
Taylor's  series is used  for moving x  in  the  vicinity of a root.  This  method was  chosen 
because, first, it is quite  efficient  in moving toward  roots  and,  second, it can  be  pro- 
grammed  to  almost  certainly  get  sufficiently  near all the real roots. 

The  series  may  be  written as 

P(x + h) = P(x) = hP'(x) + - P"(x) h2 
2 

(23) 

Since real  roots are the x values  for which  P(x) is zero,  the  x  increment,  or h, 
which makes  P(x + h) equal zero is sought. With h  the only unlmown in equation  (23), 
the  quadratic equation can  be  solved  for  values of h. If the  h's are real,  the  polynomial 
appears headed for a root.  The  value of x  then is corrected by the  h with the  smaller 
magnitude. And P(x)  and its derivatives are recalculated with the new x. When the 
absolute  value of P(x)  gets below the  resolution  distance TOLR, the  ratio of derivatives 
procedure is entered. 

If the  h's  in  the  Taylor's  series  quadratic  equation are not real,  the  polynomial 
either has  made  an  approach  and  retreat  from  the  x-axis  or  appears  to  be  making  an 
approach and retreat  from  the  x-axis.  Through  logical  use of P(x),  P'(x)  and their 
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comparison with P(x)  and P'(x) from  the  previous  x trial, the  polynomial  can  be  in- 
vestigated  in  this  region  to  readily  determine if this is indeed  an  x-axis  approach  and 
retreat   rather than a root. If the  region is only an  approach,  increasing  x-increment 
steps  are  taken  away  from the region  in  the  direction started. These  steps  are continued 
until  either  another real h is found or  15 steps have  been  taken  in which case  x  values 
are investigated  in  the  other  direction  from  the  starting point. If no real roots are found 
in that direction  either,  the  complex  number  analysis  subroutine, COMPLX, is called. 

ment is in the direction of decreasing I P(x) I. After a root  has  been found, the  starting 
point in  the  search  for  the  next  root is the  estimated  x  value  from  the  ratio of deriva- 
tives  analysis. 

The  starting point in  the  search  for  the first real  root is x = 0. The first x  move- 

Real  number  analysis  by  ratio of derivatives. - The  most  important  parameter  in 
the  program  for  making  decisions with ratio of derivatives  analysis is ARATIO, which 
is defined as 

ARATIO 

where  k is the  order of a polynomial  derivative.  This 
know from  theory that 

parameter is useful  because we 

ARATIO << 0.5 for k = m 

and 

1.0 > ARATIO L 0.5 for 1s k < m (26) 

as a root is approached. In the program 0.45 was used  for  the 0. 5 in  equations (25) 
and (26) to  give a little allowance for  error.  These  constants  in  essence establish when 
roots  are  treated as multiple  or  close  together. 

The  remaining  possibility of ARATIO greater  than  one is an  indication of either  an 
x  value  between or among roots  but not relatively  near  any  or  an  encounter with absolute 
e r ro r  of a computed derivative  rather  than a true value. To do meaningful  analysis, it 
is necessary  to know which it is. So it is important  to  establish a good polynomial e r ro r  
criterion.  The  criterion  parameter  in the program is TOLRQ. It is the probable  abso- 
lute  error of a computed  polynomial  value  normalized  by  the  lowest  degree  constant 
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which is nonzero.  The  normalized  polynomial or polynomial  derivative  in  the  program 
is P(ND); and it is to be distinguished  from POLY(ND), the  value of the  polynomial  or 
polynomial  derivative. Also note  that  since a zero  subscript  cannot  be  used in some 
computer  languages, P(l )  denotes  the  normalized  polynomial, P(2) is the  normalized 
first derivative,  and so forth; that is, ND = k + 1. 

TOLRQ  should be  greater  than  the  probable  absolute  error of P(ND); but  excess 
margin  cuts into  the  root  resolution  distance  criterion TOLR,  which is the  square  root 
of TOLRQ. Consequently, TOLRQ  should be set with care. In this  program TOLRQ 
varies with the  degree of the  polynomial as a result of an  epsilon, delta error  analysis 
of multiroot  polynomials or  varying  degree. After the  functional  relation was estab- 
lished,  the  magnitude of TOLRQ was  finally set by  noting  when  computed values  became 
different  from known polynomial  values  for  specific  cases. With this functional rela- 
tion of TOLRQ, better  root  accuracy  can  be  expected with low degree  polynomials. 

The  resolution  criterion  coefficients are  essentially  an  absolute  distance. However, 
it is probably  desirable  to  have  the  resolution  criterion  be a relative  distance  to  the 
local  root.  This  effectively  can  be  accomplished  by  scaling the polynomial so  the  local 
root is of order one. To  accomplish this, subroutine SCALER is called for an  order of 
magnitude  check of x on only the first pass  through  the  ratio of derivatives  analysis of 
each  root. If the  hexadecimal  logarithm of x is not within 50.5 of zero, the polynomial 
wi l l  be  hexadecimally  scaled  to  bring  the  local  x  to  order one for  root  analysis. How- 
ever,  since  the  polynomial  coefficients  must  be held  within the exponent limits of a 
computer,  scaling  in  some  cases  is  limited. 

In recognition of the  probable  magnitude of polynomial  absolute  error,  an  attempt 
is made  to  begin  the  ratio of derivatives  analysis with P(ND - l), P(ND), and 
P(ND + 1) values which have  magnitudes greater than TOLRQ.  Initially, ND is two so  
P(1), P(2), and  P(3) a r e  calculated.  The  procedure is to  then  check P(l) with TOLRQ. 
If I P( 1) I < TOLRQ, ND is increased by one if N D  is less than  the  degree of the poly- 
nomial.  Then I P(ND - 1) I is checked with TOLRQ. The  procedure  is  repeated  until 
I P(ND - 1) I is greater  than TOLRQ or N D  equals  the  degree of the polynomial. If 
(P(ND - 1) I > TOLRQ, the  logical  parameter LIMIT is set  to  zero in the  program  to 
indicate  complete  ratio of derivative  analysis is possible. 

ARATIO is computed  from  the  three  polynomial  and/or  polynomial  derivative 
values, POLY(ND - l), POLY(ND), and POLY(ND + 1). When LIMIT = 0 and 
ARATIO < 1, analysis is done  according  to  theory. When LIMIT = 1, the  computed 
value of POLY(ND - 1) is expected  to  have  an  absolute error value  rather  than  an  ap- 
propriate  value  for POLY(ND - 1).  Thus,  the  analysis  methods  based on an  accurate 
value of POLY(ND - 1) a r e  not used.  However, some of the  ratio of derivatives judg- 
ments  can still be  made on the  assumption  that  the  actual  value of I POLY(ND - 1) I is 
probably less than the computed  value of I POLY(ND - 1) I since  the  lowest  allowable 
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program  limit of I P(ND - 1) I is 0 . 5  * TOLRQ. 
When ARATIO > 1 and LIMIT = 0, the  present  x  value is between or  among  roots. 

Some  knowledge of the  nature of ARATIO contours about roots is helpful in  establishing 
procedures when AFUTIO is greater than one. As an example,  the ARATIO contours 
for  the polynomial, P(z) = z  (z - l)(z - loo), are shown on the  complex  plane  in  figures 
1 to 3. Such plots  for  hown  problems yield a great  deal of information as to how to 
handle  general  cases. In this  example,  note  that,  for  the  group of three real roots, 

. (1) the  relative  symmetry, (2) the  points  where ARATIO approaches  zero and  infinity, 
and (3) the  values of AFUTIO at derivative  ratios  above and  below the  point  where  an 
ARATIO approaches  zero  or infinity. From  these  figures  for this single  problem  the 
following elements of procedure evolved: 

2 

(1) When ARATIO for ND is greater than one, step in a direction  until  an ARATIO 

(2) This low ARATIO may  be a false root  or  roots, so check  the  root  candidate as 

(a) If N D  = 2, either P(x) or  P"(x) approaches  zero; so if I P(x) I < IP"(x) I, 

(b) If ND > 2, ARATIO for ND - 1 at a root should be 0. 5 by  the  theory. 

very  near  zero is found. 

follows: 

x i s  the root. 

1 . 4 ~  ARATIO 

1. c 

. a  

x 

-. 4 -. 2 0 . 2  . 4  .6 . a  1.0 1.2 
X 

Figure 1. - Third  degree  ARATIO  contours  for polyncmial P(z) = z2(z - l ) ( z  - 100) where 

ARATIO = -/- I P Y z ) I  IP"'(Z)l 
IP"'(z)l IP"(Z)l . 
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i.zr ARATIO 

-. 4 -. 2 0 .2 . 4  . 6  .8 1.0 1.2 

Figure 2. - Second degree ARATIO contours  for  polynanial  P(z) = z2(z - l ) (z  - 100) where 

X .  

ARATIO 

\ . .6667 

\ 

X 

Figure 3. - First  degree ARATIO contours  for  polynanial P(z) = z2(z - l ) ( z  - 100) where 
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(3) If the  root point is false (i. e., ARATIO for ND - 1 approaches infinity when 
ND > 2 or I P"(x) I < I P(x) I when ND = 2), set x at the  opposite  point of symmetry and 
make  the  root test again. 
A  summary of the  basic  logical  steps  for  the  ratio of derivatives  analysis  for  real  roots 
is given  in  appendix D. The  general philosophy of resolving  roots  in a group is to start 
with an ND equal  to  m + 1 and  work down in ND as root  resolution  progresses.  The 
reason  is  that  multiple  roots  should be found first. The  multiple  root  analysis is done 
with higher  derivatives, which  often can  be  calculated  accurately,  whereas  the  lower 
derivatives  and P(l) may  be below TOLRQ, so that  the  single  root  analysis  cannot  be 
done  accurately. 

If upon entry of the  ratio of derivatives  part of the  program  the  x point is outside 
the  group by a distance of approximately  one or two times  the  maximum  distance  between 
roots  in  the  group,  the  group will appear at first to  be a multiple  root; so  the  initial ND 
value  naturally will be  raised  to  the  number of roots in the  group  plus one (note  that  the 
values of ARATIO away from  roots  in  figs. 2 and 3 are always  greater  than 0. 5). How- 
ever, if the first  x tr ial  in the  ratios of derivative  analysis is within the  group, it i s  
probable  that a low  ARATIO of a false root  will  be found at a lower  than  desired N D .  

The  test  for  this  situation is to raise ND by one and  check  the ARATIO at the  higher 
ND. If this ARATIO > 1, analysis is begun at  this  higher ND; but if ARATIO < 1, 
analysis is begun at the  original ND. 

The  aforementioned  procedures  probably would work  quite well for only real  roots; 
but a program  must  be  able  to  handle  the  cases of real  and  complex  roots  in a group. 
ARATIO contours  for known problems of this  type show definite  patterns;  but  the  con- 
tours   are  not as distinctive as those  for only real  roots.  These  contours, however,  give 
clues as to how to  search  for a real  root when one is known to  exist  in  the  group. 

An odd number of real   roots is known to  exist within a range of x i f  P(l) is known 
to  change  sign in that  range.  As  an  aid for the analysis of a group of roots a running 
record of a possible  root  range is kept. If values of P(1) distinguishable  from the abso- 
lute e r ro r   a r e  known to  change  sign  between  x trials, the  logical  parameter IMSURE 
is   set  to one. At each new x  trial throughout  the Taylor's  series  investigation  and  ratio 
of derivative  analysis, P(l) is checked; so the  root  range is often narrowed with each 
new x trial. If IMSURE is one, the  root  group ARATIO's wi l l  be  quite  carefully 
searched  for a real  root  over  the known root  range.  It  may not be  possible  to find a root 
because  the  necessary P(ND) values are below TOLRQ. In this  case  x  values are 
found which place I P( 1) I values at the  ends of the  root  range  between 0.5 and 1.0  times 
TOLRQ; and a root is divided out at midrange x. 

Dividing out roots. - After a root or multiple  roots a r e  identified, the normal  pro- 
cedure is to (1) locate x within the range of 0.2 * TOLR and  1.0 * TOLR of b., 
(2) estimate  the  location of the  next  root, (3) improve  the  value of the  present  root,  and 

3 
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(4) divide  the  root out of the polynomial. The x estimate  for  the  next  root is given  by 
the following  equation: 

If IP(ND - 1) I > TOLRQ, the value of the  present  root  can be improved,  usually  by  sev- 
eral   orders of magnitudes,  by the following equation: 

The  number of roots  m found are divided out of the  polynomial one at a time  by  the 
method  presented on pages 76 and 77 of reference 3. This  method is shown in  appen- 
dix B for convenience. The  normalized  polynomial  remainder  (polynomial  relative 
error)  left  after  each  root is divided out is also  saved  for output. The  polynomial re-  
mainder  should  be  zero; so  its value is a good clue as to  whether  or not the  root was 
determined as accurately as it should  have been. 

When the  degree of the  polynomial is reduced  to two or  less,  subroutine QED is 
called. Any remaining  roots  are found by  direct  computation.  Then all of the polyno- 
mial  roots  and  remainders are printed. 

Program  Segments in Coded in Complex Number  Algebra 

If more  than two roots  remain  after the search  for real roots  has  been  completed, 
subroutine COMPLX is called  for  the  search of complex  conjugate  pairs of roots. The 
procedures in COMPLX somewhat  parallels  those of ROOTS. 

Polynomial and polynomial  derivative  calculation  procedure. - The  polynomial  P(z) 
~ ~ ~~~ ~" ~ "~ 

and its derivatives  are  calculated with a form of equation (21) for complex  numbers.  The 
calculation of a polynomial  and its derivatives with z  the  independent  variable is the 
specific function of subroutine CPOLY. At any  z point during  iteration,  P(z),  P'(z), 
and  P"(z)  always are calculated.  Higher  order  derivatives  are  calculated only if the 
ratio of derivatives  segment of the  program has  a need for  them. 

Approximate  root  location with second  order  Taylor's  series. - A second  order 
~~ 
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complex  Taylor's  series is used  to  locate z in  the  vicinity of a root.  The series may 
be  written as 

(Zr - Z l 2  
P(zr) = P(z) + P'(z)(zr - z) + P"(z) 

2 

Since roots are zr  values  from which P(zr) is zero, equation (29) can  be  written as 

The  solution of equation (30) for zr - z  can be expressed as 

. 

The  plus o r  minus  sign on the  square  root  term of equation  (31)  indicates  that  the  term 
may be  used as computed or at a 180' phase  angle. Both solutions  for zr - z a r e  com- 
puted. The one that gives  the  smaller  absolute  value of zr - z in  the  complex  plane is 
used  for  the new trial zr. When the  absolute  value of P(zr) is reduced below the  reso- 
lution  tolerance TOLI, the  ratio of derivatives  analysis is begun. 

The  initial  coordinates of the  Taylor's  series  search  for  the first complex  root a r e  
the  x  that  corresponds  to  some  local  minimum of IP(x) I in  the real number  Taylor's 
series analysis in ROOTS and a y  value  equal  to  the  square  root of 1 P(x) 1. After a 
complex  conjugate pair of roots have  been found, the  initial  coordinates  in  the  search 
for  the  next  roots a r e  the  estimates  from  the  final  stages of the  ratio of derivatives 
analysis of the  present  root. 

Complex ~ ~~ - number .~ ~ ~ root  analysis by ratio of derivatives. - It is rather  interesting  that 
all of the  information  extracted  from  real  number  ratio of derivative  analysis  along  the 
x-axis  can  also  be  extracted  from complex  number ratio of derivative  analysis  in  the 
complex plane. The  reason  for  this lies with the  very  definition of analytic  complex 
number  derivatives.  The  essential point is that a derivative has the  same  value at a 
point no matter  from which direction  the point is approached.  The  complex  derivatives 
have real  and  complex parts which can  be  vectorially  combined  into  derivative  magni- 

.. . -  __ 
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tudes.  Ratio of derivative  analysis  based on these  derivative  magnitudes (ARATIO'S) 
works  in  the  same way as real number  ratio of derivative  analysis  for  the  determination 
of m. 

As with real roots  the  derivative  ratios  used  to  establish  m are the  ones  from 
which the component  adjustments a r e  made.  However,  in  complex  numbers it is neces- 
sary  to  break down the  appropriate  derivative  ratios  into real and  imaginary  parts  to 
get  x  and  y  adjustment  values. Since the  development of appropriate  equations is 
somewhat  complicated, it is done  in  appendix B, and only the  results  are shown here. 
The  adjusted  or new x  and  y  values a r e  obtained from  the  derivatives by the following 
equations: 

where 

A 
Xnew = x  - 

+ B~ 

B 
Y,,, = Y + 

+ B~ 

A =  Pm(x)P"-1(x) + Pm(y)Pm-l(y) 

and 

B =  Pm(y)Pm-l(x) - Pm(x)Prn-l(y) 

In the ratio of derivatives  analysis,  the  logical  parameter LIMIT is again  used  to 
indicate  whether or not the  computed  polynomial  value is greater than  the  probable ab- 
solute  error.  The  complex  number  criterion TOLIQ is of the  same  form as TOLRQ, 
but TOLIQ was set at  four  times TOLRQ. This is because  more  computer  operations 
are needed  to  compute a complex  number  polynomial  value than for a real  number poly- 
nomial of the  same  degree.  The  complex  root  resolution  criterion  TOLI is the  square 
root of TOLIQ. 

For  the  initial z tr ial  in  ratio of derivatives  analysis two checks are made. First, 
the  degree of the  root  approached is raised as necessary within the  restraints of the  de- 
gree of the  polynomial  to  begin the analysis with LIMIT equal  to  zero if  possible. And 
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second,  the  polynomial is scaled if the  magnitude of z is not sufficiently  near one. 
If, during  ratio of derivatives  analysis, ARATIO is less than  one  and LIMIT is 

zero,  the  analysis  follows  the  theory. When  ARATIO is greater than  one with LIMIT 
equal  to  zero,  the  present point lies between or  among  roots.  Since  there is another 
adjustment  degree of freedom  on a plane as compared  to  that  along a line, there is 
greater  desire  to have z movement  procedures which effectively  and  efficiently  move 
toward  roots. Again the ARATIO contours  in  the  complex  plane  give  clues of effective 
procedures. See figure 4 for  an  example of contours  about  complex  roots. Also, the 

x 

X 

Figure 4. -ARATIO  contours  for  polynanial P(z) = (z - 9 + i $ ( z  - 9 - i? (z  - 11 + i $ ( z  - 11 - i)z. 
(Note The polynanial   is   symmetr ic in four  quadrants  about  the  point x = 10, y = 0. ) 

ARATIO contours of figures 1 to 3 a r e  quite  similar  to  those  in  the  vicinity of a similar 
grouping of complex  roots. When  ARATIO is somewhat greater than one, the  contours 
are nearly  circles.  Clearly  steps should be  toward  lower ARATIO; but a direction 
started  may not necessarily head in  the  direction of an ARATIO less than 0.45. Con- 
sequently,  the  need of a curved  path is indicated. 

In the  program  the  procedure, when  ARATIO is greater  than one, is to test step 
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in  the x direction  and  then  in  the  y  direction.  From  these two normal  steps the most 
effective  direction  for  reducing ARATIO is determined.  Then a spiral  path  in 30' in- 
crements is followed in  the  search  for  an ARATIO less than 0.45. If while on the 
spiral  ARATIO increases  from  the  previous  iteration,  analysis  reverts  back  to  the  pre- 
vious point. At that point, a new direction is determined  from  another set of x and  y 
test steps;  and  then a spiral  turning  in  the  opposite  direction is begun. The  experience 
is that the  program should seldom  have  to  move  more  than  seven  points on any one 
spiral   or should  seldom  have to  begin a new spiral   more than once. 

In the  complex  plane  the  general  philosophy of resolving  roots  in a group is nearly 
the  same as on the  real  axis  in ROOTS. There  are  some  differences, however,  which 
deserve  discussion. First, since  there is freedom  to  move  about  the  complex  plane, 
the  problem of resolving  complex  from  real  roots  no  longer  exists. If it  turns out that 
there still are real  roots  in  the  group,  they  can be identified  in  the  complex  plane too. 

A  second  difference is in  the  check of the  degree of the  root  candidate  investigated. 
In ROOTS a root  candidate was quite  well  located  before a final  check of the root  degree 
(ND level) was made. In the  complex  plane there are not quite as many logical  param- 
eter  possibilities, so it is a little easier to  change  the  root  degree  at  any  time  during 
the  ratio of derivative  analysis.  This is done  by  checking  AFUTIO and another 
ARATIO at the next lower N D  for  each  z trial when the  degree of the  root is greater 
than one. 

A third  difference is that the symmetry of ARATIO contours cannot be depended 
upon. In a root  group it is less  probable that points  where ARATIO equals  zero will 
be  symmetrical with each  other about a point where ARATIO equals infinity.  However, 
by  keeping  track of ARATIO's at the two ND's it is usually  possible  to identify false 
roots quickly. 

Dividing out roots. - As a root or  multiple  roots  are  approached, the final  decision 
on the  multiplicity of the  root is made when z is within the  range of 0. 2 * TOLI  and 
1. 0 * TOLI of bj. After m is established,  the  location of the  next  nearest  root is 
estimated  from g1  found by 

Since the  conjugate of the  present  root is also  in  gl,  the  breakdown of gl  for  the next 
nearest  root location is a rather lengthy development  which is shown in appendix B. 
The  resulting  equations  for  the new coordinates  are 
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and 

where  gR  and gI, respectively, are the real and imaginary  parts of gl.  The  values 
of the  present  root  coordinates  then  are  improved with the  same  equations  used  for 
coordinate  adjustment,  that is, equations (32) and (33) .  

A complex  root is first  artificially divided  out of the  polynomial  to find the  real 
and  imaginary  normalized  polynomial  remainders. Since these  remainders should be 
zero, their values are clues as to  whether or  not the  complex  root was located as ac- 
curately as it should  have  been.  The  dividing out process is artificial in the  sense  that 
the  polynomial  coefficients a r e  not permanently changed until  the  root and its conjugate 
a r e  divided  out  together  in real  algebra.  The  equations  and  details  for  dividing out the 
complex roots by  both methods a r e  shown in  appendix B. The  polynomial  remainder 
from  the  real  algebra  division  appears  in  the  same  printout  line with the  conjugate  root. 

Examples 

The  general  capabilities  and  limitations of the  program  have  been  discussed;  but 
they are  most effectively shown with examples.  The  exact  roots of several  polynomials 
that a r e  difficult  to  solve are shown with the  computed roots  in  the  program output sec- 
tion of appendix C. These  examples  illustrate the root  resolution  capability of this  pro- 
gram. 

Appendix C also  contains a listing of the  program, a description list of the  program 
variables,  and  other  special  instructions for  a user. 

CONCLUDING REMARKS 

The  ratio of derivatives method is a powerful  method of finding roots of polynomials. 
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A computer  program  for finding  the roots of real number  polynomials  by  this  method was 
developed to see how useful  the  theory is within  the  confines of calculated  number  accur- 
acies.  Examples of the  root  resolution  power of this  program  illustrate  that  the method 
is indeed  powerful  in practice as well as in  theory. Although a program was not  devel- 
oped for complex  number  polynomials  coefficients,  equally  effective  root  finding  pro- 
grams can be developed  with  the  ratio of derivatives method. 

Lewis  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland, Ohio, March 2, 1972, 
764-74. 
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APPENDIX A 

SYMBOLS 

combination of complex  derivative  terms (see eq. (B27)) 

general polynomial  coefficient 

combination of complex  derivative  terms (see eq. (B28)) 
general  coordinate of roots 

general polynomial  coefficient after a root is divided  out 

n 

j=1 
function of the  form p/(z - bj)l 

n 

j = 1  
function of the form p/(z - bj)k] 

n-m 

]=1 
f l  at  a root with the  local  root point  excluded, [l/(z - b j l  

n-m 

j=1  
fk  at a root with the  local  root point  excluded, [I/(, - bj)k] 

x  adjustment  increment  toward a root  by  Taylor's  series 

degree of an  arbitrary  polynomial  derivative 

arbitrary exponent of the  function f l  in eq. (B21) 

number of roots at the  particular  root point 

number of roots  in  the  polynomial 

polynomial  in real numbers 

polynomial  in  complex  numbers 

k  polynomial  derivative  in  complex  numbers 

independent variable  or real component of independent variable 

imaginary component of independent variable 

independent variable  in  complex  number  form 

th 

Subscripts: 

I refers to  imaginary  part of a complex  variable 

j an  arbitrary  term  or  root of a polynomial 
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Ill 1111111 

n 

new 

next 

R 

r 

,,, . .”. . . . , .. . 

nth and last root  or next to last polynomial  coefficient 

newest  approximation  to a root 

estimate of next  root  location 

refers to real part of a complex  variable 

root  or  very  near  root  value 

Superscripts: 

j arbitrary  term in the polynomial 

k degree of an  arbitrary polynomial  derivative 

2 arbitrary power of the  function f l  in eq. (B21) 

m  number of roots at a root point 

n degree of the  polynomial 
? first derivative 

r ?  second  derivative 

1 0  third  derivative 

r r r r  fourth  derivative 
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APPENDIX B 

RATIO OF POLYNOMIAL  DERIVATIVE EQUATIONS 

Development of General  Equations 

A general  complex  number  polynomial  in terms of its roots  can  be  written as 

P(z) = (Z  - bl)(z - b 2 ) ( ~  - b3) . . . (Z - bn) 

The first derivative of equation (Bl )  is 

P'(z) = {Bz  - b2)(z - b3) . . . (z - bn)] + u z  - bl)(z - b3) . . . (z - bnq 

+ . . . + [(z - bl)(z - b2) . . . (z - bn-lfl} (B 2) 

Form  the first derivative  ratio  by  dividing  equation (B2) by  equation (B l )  

--fl=-+-+- P'(4  - 1 1 1 + .  . . +- 1 + .  . . +- 1 
P(z) z - b l  z - b 2  z - b g  z - bj  z - bn 

(B3) 

Generalize  equation (B3) to 

f1 =z m 
+ 81 - bj 

where b. is the  closest  root  to z ,  m is the  number of roots  at  b and g1 is the  sum 
of the  remaining  n - m terms in  equation (B3). Equation (B2) can  be  written as 

J j' 

P'(z) = P(z) - p'o = P(z) * f l  
H z )  

Differentiate  equation (B5) to  get  the second  derivative of P(x) 

P"(z) = ~ ' ( 2 )  * f l  + P(z) . f i  

= P(z) * f l  - P(z) +-- l +  2 [ 1 + .  . . 
(z - b1)2 (z - b2)2 (z - b3)2 
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where 

f 2  = 

P"(z) = P(z) - (f; - f2) 

- 
l +  l +  1 + .  . . + 

(z - b1)2 (z - b d 2  (z - b3)2 

Generalize  equation (B7) to 

The  second  derivative  ratio is 

2 
P"(z) - f l  - f2 
P'(4 f l  
"- 

Substituting  equations (B4) and (B8), equation (B9) becomes 

- - 
m 

+ 81 z - bj 

Differentiate  equation (B6) to  get  the  third  derivative of P(z) 

P"'(z) = P'(z) * (f? - f2) + P(z) * (2f l f i  - fi) 
= P(z) - f l  - (f; - f2) + P(z) - [2f1(-l)f2 - (-2)f3] 
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b 

where 

f 3 = [  

+ l +  1 + .  . . + 
(z - b1)3 ( z  - b2)3 ( z  - b3) 3 

Generalize  equation (B12) to 

f3 = 
+ g3 

m 

(z - b.)3 
1 

The  third  derivative  ratio is 

With the  generalized f substitutions  (B14)  becomes 

P"(z) - 1) ; 2mgl 2 
+ 81 - g2 

( z  - bj)2 - bj 

Differentiate  equation  (B11)  to  get  the  fourth  derivative of P(z) 

where 

f 4 = [  

+ l +  1 + .  . . + 
(z - b1)4 (z - b2)4 ( z  - b3)4 
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Again generalize  the f as before 

The  fourth  derivative  ratio is 

f t  - 6flf2 + 8flf3 + 3f2 - 6f4 2 2 
P'"'(z) = 
P"'(z) 

With the  generalized f substitutions,  equation (B19) becomes 

- l)(m - 2)(m - 3) + 

(z - bj) (z - bj) (z - bj) 

4m(m - l)(m - 2)gl  6m(m - l)g: 4mgi 
+ + -+ g;] 

4 3 2 z - bj 
P""(z) = " . _ _ _ _ ~  -~ " " . . " - . . 

Higher  derivatives  develop  in  the same way. The  process  follows  the  pattern  used  to  get 
the first four  derivatives.  The  higher  derivatives  have  progressively  more  terms  in  the 
generalized  forms  for  the f's. This  does not seem  consistent with the  fact that Pn(z) 
must  be a constant and all the  higher  derivatives  must be zero. But  what is happening is 
that  in  progressing  to high derivatives with the  generalized  forms  for  the f's, more and 
more  terms  are  carried  internally  that would cancel if the f's and gps  were expanded  in 
their  z - b  terms. 

At this point a generalization of the  patterns shown by the first four  derivatives is 
in  order. First note  that  the terms  in  the  brackets  in equation (B20) and  in  each of the 
corresponding  lower  order  equations  correspond  to  something  like a binomial  expansion. 
The  general  form  for f l  to  the  k  power  can  be  expressed as th 
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2- k!  m! (gl) 2 
ff; = 

Z!(k - Z)!(m - k + Z)!(z - b.)k-z 
2 =o J 

if  01 is understood  to  be one. 
Comparison of equations (B19) and (B20) and  each of the  other  corresponding  pairs 

of derivative  ratio  equations  indicates  the following procedure  for  transferring  the  deriv- 
ative  ratio  equations  from  those with f’s to the form with m’s and g’s: (1) replace  the 
fits and  powers of f l  with equation (B21), and (2) replace all the f’s that  do not have a 
subscript of 1 with g’s  that  have  the  corresponding  subscript. 

Division of  a  Real  Root from  the  Polynomials  (from ref. 3) 

The  general  polynomial 

~ ( x )  = alxn + a2xn-l + . . . + anx + an+l 

can  be  expressed  in  terms of a root as 

P(x) = (x - Xr)(Clxn-l + c2xn-2 + . . . + CnmlX + cn) + Cn+l 

By equating powers of x  in  equations (B22) and (B23) 

al = c1 

a2 = c2 - clxr 

a3 = c3 - 2Xr 

7 

“n+l=  ‘n+l - ‘nXr J 
The  c’s  can  be  solved  for  directly  by  starting  from  the  top of the equation set  (B24) 
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c1 = al 

c 2 = a 2 + c  x l r  

c3 = a 3  + c  2 r  x 

'n+l = "n+l+  'nXr 

The  constants, c1 to cn, a r e  the coefficients  for  the  polynomial  left  after  the  root is 
divided out. The  constant c ~ + ~  is the  remainder which  should be  zero. 

Complex Number Root Coordinate  Adjustment by Ratio of Derivatives 

When in the vicinity of roots,  complex  derivative  ratios  are  used  for the analysis 
and  finer  adjustment  to  root  coordinates. Once m is determined, the coordinate adjust- 
ment  equations a r e  obtained from the following general  equations: 

Break  equation (B26)  into real  and  imaginary  parts 

Let 

Pm(x)Pm-l(x) + Pm(y)P  (y) m-1 
A =  
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B =  Pm(y)Pm-l(x) - Pm(x)Pm-l(y 1 

[Pm-l(x)] + [P"-'(yi] 

Therefore, 

By  dividing  equation (B29) by equation  (B30), we have  the following simple  relation: 

Equation (B31) then can be  used  in  equations (B29) and (B30) to  get  the following x and 
y  adjustment  equations: 

Estimate of Next  Nearest  Complex Root 

When near a root,  the term g1 is obtained  from 



where 

Included in  the  summation is the  conjugate of the  present  root. If the  next  nearest  root 
and its conjugate are  relatively much nearer  than  the  others  remaining,  gl  can  be  ap- 
proximated  by 

g - g   + i g I =  m l +  1 
1 -  R - +  

'r - 'r 'r - 'next 'r - next 
- 

where  gR and gI are, respectively,  the real and  imaginary  parts of gl. Now continue 
to expand the preceding  equation as follows:, 

" 
m + 1 + 1 

2Yr 
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where 

The  separate  equations for real and imaginary  parts  are 

"I 
2Yr D 

Divide the  preceding  equations and solve for ynext 2 

Substitute  equation (B36) into  equation (B34) and  solve for xnext 
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The  plus ynext value is used  in  equation (B36) in  the  attempt  to  keep  the  search  for 
complex roots above  the  x-axis. 

Division of a Complex Root from  the Polynomial 

The  general  polynomial 

~ ( z )  = alzn + a2zn-l + . . . anz + an+l 

can  be  expressed  in  terms of a root as 

P(z) = (z - Zr) c1zn-1+  c2zn-2 + . . . Cn-1Z + cn) + Cn+1 ( 
Equating  powers of z results  in  the following: 

a1 = c1 

a2 = c2 - clz r 

a3 = c3 - c2zr 

The c's are complex  coefficients which may be solved  for  directly by starting  from  the 
top of the equation set (B39). 
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c1 = a1 

c 2 = a 2 + c  z l r  

c 3 = a 3 + c  z 2 r  

‘n+l = an+l + ‘nZr 

so 

C R, 3 = “3 + ‘R, zXr - ‘I, 2Yr 

‘R, n+l = an+l + ‘R, nxr - ‘I, nyr 

and 

5 ,  n+l - ‘R, nyr + ‘I, nxr 
- 

The  sets of constants c 
imaginary sets of coefficients  for  the  polynomial  left  after the root is divided out. This 
division is used only to  determine  the  remainder  terms cR, n+l 

R, 1 to R? n and c to cI, n, a r e  the respective  real and 1, 1 

and ‘I, n+l’ 
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Division of a  Complex Conjugate  Pair of Roots from  the  Polynomial 

The  general  polynomial  (eq.  (B38))  can  be  expressed  in  terms of a root and its com- 
plement as 

The  product,  (z - zr)(z - zr),  can  be  expressed as 
- 

- 2 - - 
(z - zr)(z - Zr) = z - z(zr + Zr) + ZrZr 

= x2 - y - 2xxr + xr + yr + 2iy(x - 2 2 2  
Xr) 0341) 

Since the  problem  being  solved is by  definition a real polynomial  with  x the only  inde- 
pendent variable, a general  y  does not exist.  Therefore,  equation (B41) can  be  written 
in real  algebra. 

(2 - zr)(z - Zr) = x2 - 2xx + xr + y, 
- 2 2  

r 

The  general  polynomial  can  be  written as 

Equating  powers of x 



a1 = c1 

a2 = c2 - 2clxr 

a 3 = c 3 - 2 c x  2 r + c  1( x + y  :) 
a 4 = c 4 - 2 c x  3 r + c  2( x + y  F) 

The  equation  set (B42) can  be  solved  directly  for  the c 's  by starting  from  the top. 

c1 = a1 

c2 = a2 + 2c x l r  

c3 = a3 + 2c2xr - c1 ( 2  xr + yr 2, 

c4 = a4 + 2c x 3 r - '2 ( 2  xr + Yr ") 

In this case  the  polynomial  remainder after the  root  and its complement are divided out 
is 

'nXr + 'n+l 
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APPENDIX C 

THE  PROGRAM 

Information  for  Users 

The  computer  program is written  in FORTRAN N language  and it is run  in  double 
precision, On an IBM direct coupled 7044 - 7094 system  the running time  averages 
about 0.01 minute for  an  eighth-degree polynomial. The  program  has one systems  sub- 
routine  called DUBIO which appears  before  the input READ statement.  The  function of 
this  subroutine is to  allow  double  precision input and output formats on the NASA Lewis 
computer. It is not needed on most  other  computers.  For  some  applications it may not 
be  necessary  to  use  the  double  precision input and output, but  one should always  remem- 
ber  that  the output accuracy is a function of input accuracy. 

pected on the following data  cards.  The  polynomial  coefficients A(1) are read  in  order 
beginning with the high degree end of the polynomial. The input format is shown in  fig- 
ure  5. 

The first card of an input data set has  the  number N of polynomial  coefficients ex- 

Figure 5. - lnput data. 
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The  polynomial  relative  error  criterion  constants, TOLRQ  and TOLIQ, which are 
defined  near  the  beginning of the main  program ROOTS, are based on 16-significant- 
figure  double  precision  capability. If the  program is to be used  with  other  than 
16-significant-figure  machine  capability,  the  constants in TOLRQ  and  TOLIQ should 
be adjusted  directly  with  the  change  in  significant figure capability. 

Note that  the  way  the  program is structured,  meaningful  analysis  can only be done 
if TOLRQ  and  TOLIQ are above  the  absolute error   levels  of computed  polynomial 
values. However, raising TOLRQ  and  TOLIQ decreases  the  root  resolution  capability 
of a program.  To  allow  for  near  maximum  program  root  resolution  capability, TOLRQ 
and TOLIQ are internally  adjusted  to  account  for  the  greater  number of computations 
needed to  evaluate a higher  degree  polynomial. In the  Polynomial  and  Polynomial  De- 
rivative  Evaluation  section's  discussion of ROOTS it was pointed  out  that  the  least  capa- 
bility  occurs when roots   a re  grouped.  The  TOLRQ  and  TOLIQ  adjustments with 
polynomial degree are based on roots  being  grouped up to  degree ten. For  higher  degree 
polynomials  the  probability of groups of more  than  ten  roots is small, so the  increase of 
TOLRQ  and  TOLIQ  with  polynomial  degree were somewhat  leveled off. 

A final  comment  concerns  the  use of ARATIO contour  plots if a user is not satis- 
fied with the computed roots  or  has  reason  to  believe  that a ratio of derivatives  program 
is not working  properly  for a particular  problem.  The polynomial  coefficients  can be 
used  in a little  program  to  compute ARATIO values  for two or  three ND values on a 
x - y grid  over  the  troublesome area. Contour  plots  from  the  grid  values  can be a very 
helpful  aid  in  indicating  where  the  roots should  be. Values of POLY(ND - 1) in  the ab- 
solute error  range will  fog the  issue,  but  such  ranges  are  usually obvious on a plot. 

Description of Program  Variables 

Symbol 

A( 1) 

ARATIO 

W I )  

CRATIO(I) 

D 
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Description 

polynomial  coefficients  beginning  from high degree end 

absolute  value of the  ratio of successive N D  derivative  ratios, 
D POLY(ND + 1) I /  I POLY(ND) /]/[I POLY(ND) I /  I POLY(ND - 1) I] 

coefficients of polynomial  derivative 

polynomial  normalizing  constant;  also  the  calculated  imaginary  part of 
polynomial  coefficients at a complex  root 

imaginary  part of a complex  number  derivative  ratio 

value of the  complex polynomial, POLY(ND - l), squared 



DELTX 

DELTY 

DIR 

DRAT10 

DTHETA 

DX 

DXT 

DYT 

DZT 

DZT2 

D l  

D2 

D3 

FACT 

F K  

H 

Hx 

HY 

HYP 

H 1  

I 

ICHECK 

real component of an independent variable  step  in  the  complex  plane 

imaginary  component of an independent variable  step  in  the  complex  plane 

step  direction  indicator  in  the  Taylor's  series  search  for real roots 

ratio of successive ND derivative  ratios, [POLY(ND + l)/POLY(NDg/ 

spiral  angular  increment (30') used  in  moving  toward a root when known to 

[POLY(ND)/POLY(ND - 1,1 

be between  nearby  roots  in  the  complex  plane 

x-increment  to  estimated  location of next root;  also, a reference  x  step 
when searching  for a root known to  be within a root  group 

normalized real part  of complex  number  polynomial first derivative as 
used  in  complex  number  Taylor's  series  solution  for a new z 

normalized  imaginary  part of complex  number  polynomial first derivative 
as used  in  complex  number  Taylor's  series solution for a new z 

relative  distance  to  root with plus  sign in complex  number  Taylor's  series 
equation 

relative  distance  to  root with minus  sign in complex  number  Taylor's 
ser ies  equation 

value of complex polynomial,  POLY(ND), squared 

value of the ND complex  derivative  ratio  squared 

value of the ND - 1 complex  derivative  ratio  squared 

ratio of x  adjustment  to  previous  x  adjustment  in  Taylor's  series  ap- 
proach  to a root 

multiple of coefficient  for  calculation of polynomial  derivative 

x  adjustment  toward a root  by  the  Taylor's  series  approximation 

x  adjustment  toward a root by complex  Taylor's  series  approximation 

y  adjustment  toward a root  by  complex  Taylor's series approximation 

magnitude of the  square  root  term  in  complex  plane  Taylor's  series  approx- 
imation  for a new z 

x backsteps in Taylor's series search  for real roots 

polynomial  coefficient subscript  for  dimensional  variables 

a logical  parameter which activates a running  record  and  update of  XHIGH 
and XLOW 
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IDIR 

11 

IMSURE 

INK 

IR 

IREAL 

ISIGN 

IT RIG 

Iw 
" 

J 

JTRIG 

K 

KTRIG 

L 

LIMIT 

LTRIG 

M 

MULT 

N 

NC 

ND 

NDEG 

NDRV 

logical  direction  indicator  in  the  Taylor's series search  for real roots 

index of previous  nonzero  polynomial  coefficient  in  the  computation of a 
polynomial  value 

logical  indicator of the  certainty of a real root  remaining  in  the  polynomial 

logical  indicator of the  direction of scaling 

system input tape  number 

logical  indicator of the type of root  sought (IREAL = 1 for  real  roots, 
IREAL = 0 for complex  roots) 

routing  device  for  setting  spiral  direction 

routing  device of  how polynomial  approaches  the  x-axis  in  the  Taylor's 
series  search  for real roots 

system  output  tape  number 

logical  indicator  used when a pair of root  candidates  need  to  be  investigated 

current  number of roots found 

routing  device 

index  used in  dividing  out roots 

routing  device in ratio of derivative  analysis  for  roots  that  are  difficult  to 
resolve 

logical  device  for counting the  number of successive  zero  coefficients  in a 
polynomial 

logical  indicator  that a computed  polynomial  value is probably  in  the  abso- 
lute  error  range 

logical  device and counter  used when known to  be  between or among  roots 

degree of polynomial  derivative 

number of roots a t  a root point 

number of polynomial  coefficients  (degree of the  polynomial  plus  one) 

index  used  in  scaling a polynomial, also a counter  during  preliminary 
checks 

highest  order  polynomial  derivative  needed in current  analysis 

degree of the  current polynomial 

order of the  polynomial  derivative 
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NEXP 

NEXPS 

NK 

NM 

NND 

NUM 

OARAT 

OAX 

OAY 

ODRAT 

OPOLYl 

OPOLYB 

ORATIO 

PHI 

P(  1) 

POLY( I) 

POLY 1 R 

PXHIGH 

PXLOW 

Q 
Q1 

RA 

RA( 1) 
RAD 

RATIO(1) 

exponent hexadecimal  order of magnitude  factor  used  in 

exponent hexadecimal  order of magnitude factor  used  in 
scaling 

index  used  in  polynomial  scaling 

polynomial  scaling 

initial  polynomial 

index used  in  scaling a polynomial, also a counter  during  preliminary 
checks 

temporary  storages of ND 

number of roots  in  the polynomial 

value of ARATIO for  previous  iteration 

reference  value of ARATIO for  the  x-step  in  setting up the  spiral refer- 
ence  angle 

value of ARATIO from the x-step  in  setting up the  spiral  reference  angle 

value of DRAT10 for previous  iteration 

most  recent good value of POLY(1) 

most  recent good value of POLY(2) 

value of RATIO(ND - 1) from  previous  iteration 

complex  plane  angle of square  root  term  in complex  number Taylor's 
ser ies  solution  for a new z 

normalized  polynomial, P( l), or a polynomial  derivative when I > 1 

polynomial, POLY( l), or  a polynomial  derivative when I > 1 

ratio of present polynomial  value  to last  Taylor's  series  iteration polyno- 
mial  value 

value of normalized  polynomial at XHIGH 

value of normalized  polynomial at XLOW 

square  root  term of quadratic equation 

square  root  term of Taylor's  series  approximation  for real root  location 

polynomial ratio  used  to  estimate  location of next  root 

temporarily real part of polynomial  coefficient at a complex  root 

radial component of a spiral  in  the  complex  plane 

ratio of a polynomial  derivative to  the  next  lower  order  polynomial  deriva- 
tive 
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RATIO1 

RATIOR 

RRATIO(1) 

SCALE 

SLOPE 

SRATIO 

SXI 

SXrYI 

SXI2 

SYI 

THETA 

THETA0 

TOLI 

TOLIQ 

TOLR 

TOLRQ 

X 

XCON 

XCPLX 

XDT 

XH 

XHIGH 

XI 

XL 

XLAST 

imaginary  part of polynomial  ratio  used  to  estimate  location of the  next  root 

real part of polynomial ratio  used  to  estimate  location of next root 

real part of complex  number  derivative  ratio 

hexadecimal  order of magnitude factor  used  to  scale  polynomial  roots 

slope of least squares  line fit of the  hexadecimal  logarithms of the polyno- 
mial  coefficients 

parameter  used  in  setting  step  size when between or  among roots of a 
group, )/POLY(ND + 1) * POLY(ND - 1) 

sum of XN for  determination of SLOPE 

sum of the  product of XN times YI 

SXI squared 

sum of YI for  determination of SLOPE 

local  angular  coordinate of a spiral  in  the  complex  plane 

reference  angle of a spiral  in  the  complex  plane 

complex  root  resolution  distance  criterion 

probable  absolute  error of a computed  normalized  polynomial  value  in  the 
complex  plane 

real  root  resolution  distance  criterion 

probable  absolute  error of a computed  normalized  polynomial  value along 
the  x-axis 

independent  polynomial variable or real  component of independent  complex 
variable 

one of the  constants  used  to  determine DELTX and DELTY for a spiral 

x-coordinate at which the  search for complex  roots is begun 

real  part of the  denominator of the  complex  Taylor's  series  approximation 
for a new z 

temporary new value of x 

closest  x  definitely known to be greater  than  the  value of the root  sought 

initial  x  value  in  the  search  for a new root 

reference  x when adjusting  to a new x  value  between XHIGH and XLOW 

x  value of a previous  iteration 



b 

I 

XLOW 

XMULT 

XN 

XNT 

XOLD 

XP(1) 

XPN 

XPOLE 

XPOLY(1) 

XQ 

XROOT(I) 

xx 
Y 

YCON 

YCPLX 

YDT 

YI 

YLAST 

YNT 

YOLD 

YP(1) 

YPOLE 

YPOLY(I) 

closest x definitely known to be less than the  value of the  root  sought 

number of roots at a root  point 

number of a polynomial  coefficient, which is the  independent  variable  in 
the  determination of SLOPE 

real part of the  numerator of the  complex  Taylor's  series  approximation 
for  a new z 

x  value of a previous  iteration  during  resolution of a root 

real  part of normalized  complex  polynomial or  polynomial  derivative 

temporary  storage of x or  XP(1) 

x-coordinate of spiral  pole  in  the  complex  plane 

real part of complex  polynomial or polynomial  derivative 

real part of square  root  term  in  the complex  number  Taylor's series solu- 
tion for a new z 

polynomial remainder or real  part of polynomial remainder  after a root is 
divided out 

x-coordinate of a root 

temporary  storage of x 

imaginary  component of independent  complex variable 

one of the  constants  used  to  determine DELTX and DELTY for a spiral 

y-coordinate at which the  search for complex roots is begun 

imaginary  part of denominator of the  complex  number  Taylor's series  ap- 
proximation  for a new z 

initial  y  value  in  the  search for a new root,  also  hexadecimal  logarithm 
of a polynomial  coefficient 

y  value of previous  iteration on the  spiral 

imaginary  part of the  numerator of the complex  Taylor's  series  approxi- 
mation  for a new z 

y  value of a previous  iteration  during  resolution of a root 

imaginary  part of normalized  complex  polynomial or  polynomial  derivative 

y-coordinate of spiral pole in  the  complex  plane 

imaginary  part of complex  polynomial or polynomial  derivative 
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YQ imaginary  part of square  root  term  in  the  Taylor's series approximation 
for a new z 

YRU) imaginary  part of the  polynomial  remainder after a root is divided  out 

YROOT(1) y-coordinate of a root 

YY temporary  storage of y 

ZCON one of the constants  used  to set up the  spiral  increment 

Program Listing 

S I B F  T C  RCCTS 

C Q U e L E   P R E C I S I O N  A t  A R A T I O t  E t  C A T   C R A T I O t   D t   D 2 t   F K t  PI POLY, Q T  
1 R A T  R A T I O 9   R R A T I U T   S C A L E *  X 1  X H I G H v   X L A S T T   X L O W t   X P t   X P N t '   X P O L Y t  
2 X R r  X R C C T T   Y T   Y P T   Y P O L Y t   Y R t   Y R O O T  

CCIVPCN / F O L Y N /   A R A T I O t  D t  D E L T X t  0 x 1  D 2 9   F K t  It I N K ,  I R E A L t  
1 I T R I G t  IWt J T  J T R I G T  L T  L I M I T *   L T R I G t  M t  M L t   M U L T t   N t   N C t   N D t  
2 N C E G t  NCRVT  NEXPp  NEXPSt N K t  Y M t  NUMT OARAT9 Q p  S C A L E 9   S R A T I O t  
3 T C L I T   T C L I Q t   T O L R t   T O L R Q t  X *  X I 9  X L A S T t   X M U L T t   X O L D t   X P N t   Y T  
4 A ( 1 C O ) t  B(1OO)t C A ( 1 0 0 ) t   C R d T I 0 ( 1 0 0 ) ~   P ( 1 0 0 ) t   P O L Y ( 1 O O ) i   R A ( 1 0 0 ) ~  
5 R b T I C ( 1 C O ) r   R R A T I O ( 1 0 0 ) T   X P ( 1 0 Q ) r   X P O L Y ( 1 O O ) t  X R ( 1 0 0 ) t  X R O O T ( 1 0 0 )  
6 r Y P ( l O O ) r   Y P O L Y ( l O O 1 t   Y R ( 1 0 0 ) t   Y R O O T ( 1 0 0 )  

I T E S T  = 1 
I F   ( I T E S T - E Q - 2 )   C A L L   D U B I O  

c -" A ( I )  ARE C O E F F I C I E N T S   F O R   T H E   P O L Y N O M I A L *   P O L V ( X )  = A ( N ) * X * * N  
c "- + A ( h - l ) * X * * ( N - l )  + ---- + A ( 2 ) * X * * 2  + A ( l ) * X  + A ( O ) .  T H E   C O E F F I -  
c "- C I E N T S   P C S T   B E   I N P U T   I N  ORDER. START  THEM FROM THE  H IGH  DEGREE 
c "- ENC CF T F E   P O L Y N O M I A L -  

I'R = 5 
rk = 6 

5 R E A C  C I R t l 0 0 0 )   N t   ( A ( I ) t I = l t N )  
I F  ( K - L E - I )   W R I T E  (IWt.1010) 
I:F (h.GT-100) W R I T E   ( T W t 1 0 2 0 )  
W R I T E   ( I k , 1 0 3 0 )   ( A ( I ) ~ I = ~ T N )  
NUIV = N - 1  
J = C  
NC = NUP 
I F  (hC.Gl.10) NC = 9 + N U M / l O  
TCLRC = 5.0*2.0**NC*l.OE-16 
TCLR 5 S C R T ( T 0 L R C )  

T C L I  T S C R T ( T O L I Q 1  
NC = 1 

T C L I C  = 2 .0**NC* l -OE-15 

c "- I F  THE  POLYNOMIAL   BEGINS  WITH  ZERO  COEFFIC IENTS LOWER THE 
c "- DEGREP  AFPROPRIATELY- 
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CC 6 I = l r N  
IF ( P ( I  ).NE.O.O) GO TO 7 
NC = KC i 1 

C C C N T I N U E  
GC T C  5 

7 I F  (hC.EC.1) GO TO 9 
DE 8 I = N C r h '  
N V = I - N C + Z  

b ! = h - h C + l  
NUC = N - 1 

NCEG = N - 1  

E A ( K P )  = b l I )  

5 X I  f 0.0 

c "- TAKE  CUT  ANY  ZERO  ROOTS  FIRST. 

FK = b P S ( A ( 1 )  1 
DC 1C I = 2  r NDEG 
I F  I A @ S ( b ( I ) ) . L T o F K * O . O l * T U L R ~ ~  GO TO 10 
FK = L B S ( A ( 1 )  1 

IF lPE!S(C(N)/FK)  .GT.O.Ol*TOLRQ) GO TO 1 2  
x = c.0 
J = J + l  
X R C C T ( J )  = 0.0 

1 C  CCCKTIWUE 

Y R C C T I J )  = 0.0 
X R ( J I  = C O O  

Y R ( J )  = C.C 
N = h - l  
GC T C  9 

l i  I R E A L  = I 

c "- SCALE  POLYNGVIAL  S O  ROOTS  ARE  APPROXIMATELY  OF  ORDER  ONE  FOR 
C "- RCCT  RESCLUTION  COMPUT4TIUN  PURPOSES. A LEAST  SQUARES F I T  OF THE 
C --- LCCS C F   T H E   P O L Y N O M I 4 L   C O E F F I C I E N T S  TO A L I N E  IS USED. 

1' S X I  = 0.c 
S X I 2  = 0.0 
S Y I  = D O C  
S X I Y I  = c o o  
NC f C 
FK = I R S l A I l ) )  
CC 14 I = l r h  
IF 1P@S(b(I)).LT.FK+O.Ol*TOLRQ) GO TO 14 
NC NC i 1 
F K  = B R S ( A ( 1 ) )  
XN = F L C C T ( 1 )  
Y I  = C . 3 6 0 6 7 3 7 6 * A L O G ( F K )  
S X I  =I S X I  + XN 
SX12 5 SY I2 + XN*+2 
S Y I  S Y I  + Y I  
S X L Y I  = C X I Y I  + X N * Y I  

SLCPE = ( S Y I / F L O B T ( N C )  - SXIYI/SXI)/(SXI/FLOAT(NC) - S X I Z / S X I )  

NC = FK 
NK = 0 
I K K  = 1 

SLCPE = - S L O P E  

1 4  C O h T I N U E  

FK = 0.36067376*bLOG(ARSfA(l))) 

I F  (SLOPE o G T . O . 0  1 GO TO 15 

I N K  = -1 
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15 DC 1 6  I=lrlO 
IF ISLOPE.LT.0.5) GO T n  1 7  
N #  = KK + INK 

It SLCPE = SLCPE - 1.0 
17 NEXP = hK 

MEXFS = h E X P  
SCPLE = 16eODO**NEXP 
I F  (~K.EC.O.AND.NC.EO.0) GO TO 19 
DC le I = l , K  
NP = hK*(I-l) + NC 

LE A ( I )  = A ( I ) / l 6 . O C O * * N M  
1 5   I F  (K.LE.3) GO TO 570  

I F  (1REPL.EC.O) GO TO 2 8 0  
FPCT = 2.0 
I C I R  = 1 
XCPLX = c o o  

YCPLX = 1.0 

c "- I N I T I A L I Z E  PARAMETERS. X IS THE  INDEPENDENT  VARIABLE.  J TS 
c "- THE  hCMRER CF ROOTS  FOUND.  FACT IS AN X S T E P   S I Z E  FACTOR. I D I R  
c "- IF r 'C fCbTES  THE  D IRECTION  TO MOVE  ALONG X. I R E A L  IS A T R I G G E R   T n  
c *" INCICATE  THE  SEARCH FOR REAL OR I M A G I N A R Y  ROOTS. C N L Y   R E A L  
c "- ALGEPRA IS USED WHEN I R E A L  IS A P O S I T I V E   I N T E G E R .  H IS A D E L T A  X 
c "- I K C R E P E N T .   I T R I G  I S  A ROUTING  DEVICE.  I T   B A S I C A L L Y   G I V E S  AN 
C --- I N C I C A T I C N   O F  HOW THE  POLYNOPIAL  APPROACFES  THE X A X I S .  J T R I G  I S  
c " A RCL 'T INE  CEVICE WHEN HIGHER  DERIVATIVES  ARE  NEEDED.  

2C H = C.0 
C I R  = I C I R  
I C S C R E  = 0 
I T R I G  = C 
I X ) '  = 0 
JTRIG = C 
K T R I G  = C 
L T R I C  = c 
x = X I  

c "- ND I S  THE NUPBER OF D E R I V A T I V E S   C A L C U L A T E D .  
c -" k D R k  I S  A P A R T I C U L A R   D E R I V A T I V E .  

2 5  NC = 2 

c -" T H I 5  PROGRAP  USES A QUOTIENT OF S U C C E S S I V E   D E R I V A T I V E S  METHOD 
C --- I N  @CTH  THE  REAL AND  COMPLEX REGIMES TO P I N P O I N T   T H E   V A L U E S  AND 
C --- THE C U L T I P L I C I T Y  OF THE ROOTS. SINCE  THE  REAL  ROOTS ARE E4SI 'ER TO 
c "- WCRK U I T k r  THEY ARE FOUND  FIRST.  I F  THERE  ARE  REAL  ROOTS  THE 

C "- USEE. 
C --- DECREE O F  TPE  POLYNOVIAL  I S  CECREASED  BEFORE  CflMPLEX  NUMRERS  ARE 

2 E  I C F E C K  = 0 

32 e l 1 1  = A ( I )  
NCEG = N - I  
F' = hCEG 
N C R V  = 0 

35 CPLL  RPCLY 

3C OC 32 I = l r K  

I F  ( I C H E C K . E Q . O . @ R . A ~ S ( P ( l ) ) . G T o O . 5 ~ T ~ L R O )  GO TO 40 
I F  (1CHECK.GT.O)  GO T O  38  
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3e x = f X L 0 h  + X ) / 2 . 0  

3P X = ( X H I E H  + X ) / 2 0 0  
GC TC 28 

GC TC 28 
4C ICkECK = 0 

IT ( ITRIE.EC.OoOR.ABS(P(1)   ) .LEmOo5*TOLRQ) GO TO 48 
IF (1pSUFE.EQ.O) GO TO 44 
IF ( P ( l ) / P X H I G H o L T . O . O )  GO TO 4 2  
X H I G H  = x 
P-XPIGH = P ( 1 )  
GC TC 48 

42 XLCW = X 
PXLCW = F ( 1 )  
GC TC 48 

I Y S U R E  = 1 
IF ICELT>.LTmUoO GO TO 46 
X H I G F  = 8 
P X F I G H  = P ( 1 )  
XLCW = X L A S T  
PXLCb = C P C L Y l / B ( N )  
GC TC 48 

P X H I G H  = O P C ! L Y l / @ ( N )  
XLCU = x 
PXLCW = F ( 1 )  

44 I F   ( P C L Y ( L ) / O P O L Y l o G T . O . 0 )  GO TO 48 

46 X K I C V  = > L A S T  

4e IF ( 4 e S ( F ( l ) ) . L T . T O L R . O R . J T R I G . ~ ~ . 2 )  GO TO 160 
IF (IREAL.EQ.0) GO TO 50 
I F  ( I T R I C . N E . O . O R . A B S f P ( 2 ) ) . G T . T O L R )  GO TO 50 
H = O . l * C I R  
I 'F (P@S(FOLY(l)).G€.ARS(POLY(3))) GO TO 49 
I F   ( P O L Y ( l ) / P O L Y ( 3 ) . L T . O . O )  H = - D I R / ( P O L Y ( L ) * P O L Y ( 3 ) )  

4 5  DELTX = k 
O I R  = 1.c 
I T R I G  = -1 
GC T C  1 0 2  

c "- REAL  RCOTS  ARE  THE X VALUES WHICH MAKE P ( 1 )  = 0.0 S T A R T   4 T  
c "- X = C.0. THE  NEXT X I S  DETERMINED  WITH A 3 TERM  TAYLORS  SERIES. 

5C QI ( P O L Y ( 2 ) / P O L Y ( 3 ) ) ; * * 2  - 2 . 0 * P O L Y ( l ) / P O L Y ( 3 )  

c "- IF E l  IS L E S S   T H A N  ZERO, P ( 2 )  M A Y  CHANGE SIGN BEFORE P ( 1 )  
c "- C R C S S e S  THE AXIS.  

I F  (CI.LIoO.O.OR.ITRIO.EQ~1) GO TO 70 
I F  IJTRIE.EQ.0)  GO TO 57 
I F  ( P C L Y ( 1 ) / O P O L Y l . L T ~ O ~ O )  GO TO 56 
TF (1TRIC.LT.O) GO TO 52  
IF ( P C ! L Y ( L ) / P O L Y ( l ) * V )  57957966 

5 2  IF (FOLY(2) /0POLY2.GE.O.0)  GO TO 57 
5 6  D I R  1 . C  
5 7  ITRIG = -1.0 
5P IF ( C b B S ( P ( 2 ) ) o L T . T O L R Q )   P O L Y ( 2 )  = TOLRQ*CA(Z)  

IF  ( b E S ( F O L Y ( 3 ) / P O L Y ( 2 )  ).GT.O.Ol) GO TO 60 
5 s  H = - P O L Y ( l ) / P O L Y ( 2 ) * D I R  

I F  ( X )  64.65964 
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6C r'F ( b @ S ( F ( 3 ) ) . L T o T O L R Q )  GO TO 6 2  
I F  ( L B S ( F I 2 I ) i L T o T O L R Q )  GO TO 6 1  
H = PCLY(2)/POLY(3)*(SQRT(Ol~/ABS(POLY(2~/POLY(3)) - 1.0) 
GC TC 63 

GC TC 6 3  
6 1  H = C I R * S Q R T ( Q l )  

6 2  H = - P C L Y ( l ) / P O L Y ( 2 )  
63 IT ~ A B S ~ I - ~ ~ L T o 1 0 0 ~ 0 * T O L R ~ A N D ~ A B S ~ P O L Y o / P O L Y ~ l ~ ~ ~ G T ~ o O l / T O L R ~  

X GC TC 5 s  
IF (bES(F) .LT . l .OOI  GO TO 65 
I 'F (ABS(N).GT.O.L) GO TO 64 
H = H / A B S ( H ) * O o l  
GC TC 6 5  

6 4  I F  (F /XoET.0 .5)  H = 0 1 5 * X  
IF (H/X.LT.-1.5)  H = - 1 0 5 * X  

6 5  DELTX = I - + C I R  
GC TC 6 8  

DELTX = I- 
I T R I G  = I T R T G  + 1 

GC TC 102 

6 6  IF I ITR IG.GE.15 )  H = 1.5*H 

6@ J T R I G  = -1 

7C I F  ( IREAL.ECoO)  GO TO 2 7 5  

c "- STATEPENTS 70 THROUGH 7 7  I N V E S T I G A T E  Q 1  LESS  THE 0 .  

72  I F  ( ITRIC.GT.15)  GO TO 110 
I F  ~ I T R I E ~ G T ~ 1 O ~ A N D ~ A B S ~ P ~ l ~ ~ o G T ~ l ~ O / T O L R Q ~  GO TO 110 
I F  ( J T R   I E o G T o O a U R o   I T R  IG .GE.2 )  GO TU 7 4  
H 1  = - P C L Y ( 2 ) / P O L Y ( 3 ) * D I R  

H = P 1  
I F  I I T R I E . E Q ~ O ~ A N O ~ A @ S ( H l ) ~ G T ~ l ~ O )  H 1  = H l / A R S ( H l )  

IF (X.Ea.xr) GO TU 7 3  
I F   ( L I ? S ( I - l / X ) . G T o l . O )   H 1  = H l * A B S ( X / H l )  
ti = F l  
IF ( ( X  -NI)*DIR/H.LT.O.O)  H = - H  

J T R I G  = 1 
P t L Y l R  = 1.0 
GC T C  1 C C  

73 I F  ( 1 T R I C . L E . O )   I T R I G  = 1 

7 4  P C L Y l R  = P C L Y ( l ) / O P O L Y l  
TF ( J T R I C . L T . 0 )   H 1  = H 
I F  (PCLYlR.LE.O.0):  GI? TO 7 5  
I F  ( P C L Y ~ 2 ) / O P O L Y 2 . L T . O ~ O ~ A N D ~ I T R I G ~ L T ~ 2 )  GO TO 76 

c "- I F   F O L Y l R  I S  GREATER  THAN 0.59  NO ROOT IS EXPECTED I N   T H I S  
C "- R E G I @ K  CF C 1  LESS  THAN 0 .  

I F   ( P Q L Y I R . G T o 0 . 9 5 )  GO TO 80 
H 1 =   P l * F E C T  
GC T C  7 8  

7 5  I T R I G  = - 1  
I F   ( F b C T . L T . l o 0 )  GO TO 7 7  
FACT T 0 . 5  
H = I-1 
H = -IJ*FbCT 
GC TI: 90 
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I 
1 c "- T H E   S I G N  OF THE  SLOPE  OF  POLY  (X  I HAS  CHANGED.  THE  POINT OF 

c "- I K T E R E S T  W A S  BYPbSSED.  HALF  STEP  BACK. 

76  I F   ( b @ S ( F l ) . L T o T G L R )  GO TO 80 
7 7  FACT= 0.5 

HI= - H l * F A C T  
7e XCPLX = r 

YCPLX = f C R T ( A B S ( P O L Y t 1 ) ) )  
GC TC 1 O C  

c "- I F  STATEMENT 80 IS REACHED,  POLY(X1  DID  NOT  CROSS  THE X A X I S .  
c "- CCNTINUE I N  THE  SAME  DIRECTION  THAT WAS STARTED  EVEN  THOUGH  P(X)  
C "- I S   P C V I N C  AWAY FROM  THE X A X I S .   T H E   S T E P   S I Z E  I S  D O U B L E D   U N T I L  
c "- THE SECOhC C E R I V I T I V E  CHANGES  SIGN. 

8C IF  (1REAL.EQ.O) GO TO 2 7 5  
I F  ( I T R I C . L T . 2 )  H = 0.1*H 
F 4 C T  T 2.0 
TTRIO = I T R I G  + 1 
H = H*2.C 

9C IF (M.EQ.O.0) H = O. l *D IR  
DELTX = b 
GI3 TC 102 

1 O C  DELTX = k 1  
102 OPCLYZ = P C L Y t Z )  

104  TF ( P @ S ( > ) . G T . l . O I  G O  TO 106 
I F  (OPOLV2.EQ.OoOL  OPOLYZ = 1.OE-17 

I F   ( P @ S ( t E L T X T . L T . T O L R O )  GO TO 160 
GC TC log 

106  IF fAES(CELTX/X l .LT .TOLRO)  GO TO 160 
Ice c P c L v 1  3 poLy(1) 

XLPST = X 
X = X + t E L T X  
IT t I Y S U F E . E Q o 0 )  GO TO 30 
I F  IX.LE.XI ' IGH.AND.X.GE,XLOW) GO TO 30 
X = I X H I C H  + X L O H ) / 2 . 0  
H I  9 ( X H I G I '  - XLOW)/Z.O 
IF  (XHIGl "EO.XLAST1 t'l = - H 1  
CELTX = k 1  
GC TC 30 

c "- STATEPENT 110 IS REACHEC WHEN THERE  ARE NO REAL ROOTS FOUND 
c "- IF: TPE  C IRECTION  STARTED.  GO BACK TO X I  AND WORK THE  OTHER 
c "- D I R E C T I O h  IF I T  HAS NOT BEEN  INVESTIGATED.  

1IC I F  (1CSUFE.EO.O) GO TO 1 1 5  
CELTX = ( X P I G H  - XLOW) /ZoO 
IF (XoEC.XHIGH)   CELTX = -DELTX 
GC T C  102 

1 1 5  PF ( I C I R l  130,1309120 
1 2 C  I C I R  = -1.0 

x = X I  
GC T C  2 0  

c -" STATECENT 1 3 0   I S  REACHEC I F  NO REAL  ROOTS WERE FOUND IN 
c "- E I T I ' E R   S I D E  OF X 7 X I .  SEARCH  FOR  COMPLEX  ROOTS. 
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13C I R E b L  = C 
x = XCPLB 
Y = YCPLN 
Gt TC 28C 

C P C L Y l  = P C L Y ( 1 1  
XLPST = B 
I F  ( I T R I E . E C . 0 )   I T R I G  = -1 

142 IT (If’SUFEmEOoOI GO TO 150 

14C IF (48S(Ftl))oLToOoS*TOLRQ) GO T O  142 

XP = X + D E L T X  
IF ( X H o L T o X ~ I G H o A N O o X H o G T o X L O W )  GO TO 150 
1.F I L T R I C o E G o l )  GO TO 193 
I F  (KTRIEoEQ.2 )  GO TO 1244 
IF ( L T R I E o L T o O )  L T R I G  = L T R I G  - 10 
IF (b@S(FXHIGH).LToTOLRQoANOoABS(PXLOW)oLTmTOLRQ) GO TO 155 
X t  = 0.0 
IF (CELT>oGToO.O) GO T O  145 

143 IT ( P @ S ( F X L C W ) o L T o T O L R Q )  GO TO 145 
IF (XoNEoXLOW)  G O  TO 144 
XL = - 0 o S t C E L T X  
I F  (XPIGt-.GE.X-DELTX) GO T O  144 
X L  = S Q R T ( L B S ( P X L 0 W ) )  
XL 7 (XHIGH - x L a w ) * x L / ( x L  + S Q R T ( A  .B S ( PXH I G H )  1 )  

144 CELTX = XL + (XLOW - X - X L ) / ( 0 . 7  + O o 5 * A L O G ( A B S ( P X L O W * 2 . 0 / T O L R Q ) ) )  
ICHECIE = -1 
GO T C  14E 

145 I F  ( b B S ( F X H 1 G H ) o L T o T O L R Q )  GO TO 143 
IF (XoNEoXI’ IGH) GO T@ 146 
X L  3 -O.E*CELTX 
I F  (XL0WoLE.X-DELTX) GO T O  146 
XL 9 SORT ( A B S ( P X H 1 G H )  1: 
X t  = (XLCW - X H I G H ) * X L / ( X L  + S O R T ( A B S ( P X L 0 W ) ) )  

ICHECK = 1 

K T R I G  = C 
I X Y  = 0 
NC = 2 

14t D E L T X  = XL + ( X H I G H  -X - X L ) / ( 0 . 7  +Oo5*ALOG(ABS(PXHIGH*2oO/TOLR~l)) 

14e rF ( L T R I C o L T . 0 )  GO TO 150 

145 L T R I G  = C 
15C X = X + CELTX 

H1 = CEL?X 
GC T C  30 

152 P =  P - 1 
DC 154 I 3 l r ) A  
F K 9 N - NCRV - I + 1 

GC TC 35 
154 B t I )  = B ( I ) * F K  

155 I F  ( L T R I E o L T . 0 )  GO T C  201 
15P X = (XHICH + XLOW)/2.0 

GC TC 2 5 1  

c -“ STATECENTS 160 THROUGH 250 A R E   T H E   R A T I O  OF D E R I V A T I V E S  
C --- FETPCC FCR  REAL ROOTS. 

16C I F  ( I T R I C m G E o Z )  GO T O  RO 
IF ~ ~ ~ S ~ F ~ 1 ~ ~ ~ G T ~ T O L R Q ~ A N D o A ~ S ~ P O L Y ~ 2 ) / P O L Y ~ l ~ ~ ~ L T ~ l ~ O ~  GO TO 165 
IF ( N C o E C . N C E G . # N D o L T R I G . E Q . O )  GO TO 170 
IF (b@S(FINC-1)) o C T o T O L R 0 )  GO TO 162 
L I C I T  = C 
EC TC 18C 
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6 1 6 2  L I P I T  = 1 
TF ( J T R I E o L T o 2 )  GO TO 164 
I F  (bBS(F(NO)T.GT.TOLRQ) GO TO 180 
L t I C I T  = 4 
GC TC 251  

NC 7 ND i 1 
GC TC 1 5 2  

1 6 4  IF  (bBS(FC2));GT.lO.O*TOLR) GO TO 180 

165 ar  = ( P C L Y ( ~ ) / P O L Y ( ~ ) X * * ~  - ~ . O * P O L V ( L ) / P O L Y ( ~ )  
l e e  J'TRIG = I 

K T R I G  = C 
I -TRIG = C 
NC = 2 
XCPLX = x 
YCPLX = c.001 
IF ( C 1 )  1 6 7 ~ 1 6 8 ~ 1 6 8  

GO TC 8 0  

GC TC 5 8  

R I T I C Q N C )  = P O L Y ( N D + l ! / P O L Y ( N D )  
L I C I T  = c 
I F  ( C I B S ( P A T I O ( N O ) ) . L T . O ~ 5 / T O L R )  GO TO 175 
TF ( A @ S ( F  ( N O - 1 ) )  . L T * T O L R Q I  GO TO 176 

167 17R16 = 1 

16E I R E A L  = 1 

17C I F  ( b B S ( F l h 0 )  ).LE.OI~+TOLRQ) GO TO 252 

R A T I C ( N 0 - 1 )  = P O L Y ( N O ) / P O L Y ( N D - l )  
TF ~ C I @ S ~ P A T I O ~ N D ~ / R A T I O ~ N D - l ~ ~ ~ G E ~ l ~ O ~  GO TO 1 8 0  
NC 1 NO i 1 
GC TC 245 

1 7 t  DELTX = TOLR 
GC TC 14C 

J T R I G  = 3 
CCILL  SCALER 

X = X/16.0CO**NK 
I T R I G  = C 
J T R I G  = 2 
I Y S U R E  = 0 
GE TC 30 

1 7 5  I F  ( A B S ( F ( N D - l ) ) . G T o 0 . 5 * T O L R Q )  GO TO 180 

18C I F  t J T R I E . G E o 2 1  GU TO 1 8 1  

I F  ( H K . E C . 0 )  GO TO 1 8 1  

1 8 1   I F  ( A @ S ( F I N C - l ) ) . L T o O . 5 * T O L R Q I  P O L Y ( N 0 - 1 )  = 0 .5*TOLRQ*CA(ND- l )  
1 8 2   R A T I C ( N 0 - 1 )  = P O L Y ( N O ) / P O L Y ( N D - l )  
1 8 5   R A T I C ( N 0 )  = P O L Y ( N D + l I / P O L Y ( N D )  

D R 4 T I O  = R A T I O ( N D ) / R A T I O ( N D - l )  
A R b T I C  = A E S ( D R A T I O 1  

c -" hEAP 4 ROOT WITP M U L T I P L I C I T Y   E Q U A L  TO OR GREATER  THAN  NO - 1 9  

c -" THE  AESCLUTE  VALUE  OF  ARATIO  SHOULD  RE  LESS  THAN ONE. I F  A R A T I O  
c "- 1's GREATER  THAN  @NET  E ITHER A ROUNOOFF  ERROR IS ENCOUNTERED OR WE 
c "d ARE NOT F E L A T I V E L Y   C L O S E   T O  A ROOT. I N   E I T H E R  CASE  USE  RATIO. (ND)  
C "- TI j   PCVE 3 .  HOWEV€R* L I M I T   T H E   M A G N I T U D E  OF R A T I D ( N 0 )  SO THAT  THE c -" P b L T I P L I C I T Y  CHECK  CAN  BE  MADE  WITHIN  COMPUTER  ACCURACY- 

I F  (KTRIE.EC.11 GO TC 240 
IF ( L T R I E )  2 0 0 ~ 1 8 6 ~ 1 9 0  

18C IF ( !RATIOoLT. leO)  GO TO 210 
1 8 E   S R b T I C  SCRT(ABS(RATIO(NDI*RATIO(NO-l))) 

I F  ( S R A T I O . L T m 1 - 0 )   S R A T I O  = 1.0 
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19C I F  ( L T R I C o E Q . 1 )  GU TO 1 9 2  
I F  ( L T R I C o G T o l )  GO TO 1195 
x x  3 x 
I X C  = 1 

L T R I G  = 1 
O C R I T  = C R b T I O  

0% t C E L l X  
GC TC 14C 

J T R I E  = 2 

DELTX = C o l / S R A T  I O * D I R  

1 9 2  I F  ( C R A T I O / O D R A T o L T o O o O )  GO TO 194 
I F   ( I R A T I U o L T o A B S l O D R A T ) )  GO TO 196 

1 9 2  X = X - C E L T X  
DELTX = -DELTX 
D X  7 CELTX 
GC TC 19f 

Cl2RbT = C R b T I O  
GI2 TC 14C 

1 9 4   C E L T X  = - D E L T X * A R A T I G / ( A R A T I G  + A B S ( O D R A T 1 )  

1 9 5  IF ( C R A T I O / O D R A T o L T o O o O )  GO TO 194 
I F   ( L T R I E o L T o O )  GO TC 196 

1 1 9 5  IF  ( b R A T I O o G T o A B S [ O D R A T ) )  GO TO 199 
19C IF ( 4 R A T I O o L E o O o 4 5 )  GO T O   2 3 0  

rF ( L T R I E . E C o 8 o A N D o I M S U R E . E Q . O )  GO TO 2 7 2  
1 9 7   O E L T X  = L'.O*DELTX 

O C R I T  = C R P T I O  

GC TC 14C 

L T R I G  = -1 
I X C  = 0 
GC TC 1 9 7  

1SE I F  I L T R I E . G E . 0 )   L T R I G  = L T R I G  + 1 

1 5 5  I F  ( I C S U P E o E Q o O )  GO TO 2 7 6  

20C IF  (LTR!C.GEo-10 1 GO TO 195 
201 IF ( L T R I E m L T o - 1 1 )  GO TO 2 0 2  

L T R I G  = -2  
x = rx 
DELTX = -DX 
GC TC 14C 

2C2 I F  ( L T R I C o L T o - 1 2  1 GO TO 204 
2 0 3  I F  ( h C o E C . 2 )  GO TU 1 5 8  

NC f RD - 1 
DX = ( X H I G H  - X L G W ) / l O o O  
OELTX = C X  
x * XLOW + EX 
L T R I G  = -13  
GC TC 30 

2 C 4  I F  ( b R A T I O o L T o 0 . 4 5 )  GO TO 230 
2CC I F  ( L l ' R I E o L T o - 1 3 )  GO TO 2 0 6  

GC TC 2 0 7  
2CC IF  ( L I M I T o C T o O )  GO TO 2 0 7  

I F  ~ C R A T I O / O D R A T o L T o O o O o O R o L T R I G o E Q o - 1 5 )  GO TO 209 
2C7 X = X i C X  

L T R I E  = -14  
I F  (XoGEoXt ' IGH)  GO TC 203 

2CE  CCRPT = C R b T I O  
GC TC 30 
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2c 5 

21c 

212 

215 

2IE 
22C 

22 5 

226 

2 2  E 

2 2 5  

D E L T X  = CELTX*DRbTIO/ (ODRAT - D R A T 1 0 1  
L T R I G  = - 1 5  
O O R P T  = C R b T I O  
GC TC 15C 
I'F (JTRICoEQ.4) GO TI2 212 
IF ( B R A T 1 0  - 0 . 4 5 )  230,230~215 
J P R I G  = 2 
NE 3 NO - 1 
GO TC 30 

GC. TC 1 0 f  
3 T R I G  = 4 
I F  (RC.EE,NCEG) GO TO 2 2 5  
NC = NO + 1 
GC T C   1 5 2  
L T R I G  = C 

I F  ( L I H I T . E C . O . O R ~ J T R I G o E ~ ~ 3 j  GO  TO 220 

DELTX = - l .O/RATTO(NC) 
I F  (JTRIE.EO.4)   CELTX = - l . O / R A T I O ( N D - l )  
J T R I G  = Z 
GC T C   1 4 C  
IF (L IMIT.EQ.1)  GO TO 248 
I F  (LTRIE.LT.0)  Gd TO 229 
NC 1 NO - 1 
GC T C  30 
D E L T X  = CX 
GC TC 207 

c -" R A T I E ( h 0 - 1 )   I N   S T A T E M E N T  230 IS T H E   L A S T   D E R I V A T I V E   R A T I O  
C "- THPT  SHCCLC  APPROACH I N F I N I T Y  AS X APPROACHES A ROOT  VALUE. 
C -9- T H E   P R O X I P I T Y  OF X TO  THE  ROET IS l . O / R A T I O ( N D - l ) .  

c "- T H E   K U L T I P L I C I T Y   O F   R O O T S  AND THE  ESTIMATE  OF  THE  NEXT  ROOTS 
c "- ARE PADE WI'EN T H E   P O L Y N O M I A L   D E R I V A T I V E   R A T I O   L I E S   B E T W E E N   O o 5 T O L R  
c "- ARC 5.0TCLRo  THIS  MEANS  THAT  ROOTS  CLOSER  THAN  TOLR  TOGETHER 
c -" CAKNCT B E  RESOLVED F R O M  ONE  ANOTHER. THE' ACTUAL X VALUE OF THE 
c "e RCCTI  HClrEVERc IS IMPROVED SOMEWHAT I N  STATEMENT 2500 

23C I F  ( L T R I E . G T . 0 )   L T R I G  = 0 
I F  (hC.EC.2) J T R I G  = 2 
I F  ( J T R I C o E Q . 3 )  GO TO 218 
IF ( P B S I F A T I O ( N 0 - 1 )  ).LT.S.O/TOLR 1 GO TO 235 

2 3 2  IF (ABS(FPTIOIND-1)~.LT~lo0/TOLRQ) GO TO 233 
CELTX = I . O / ( T O L R * R A T I O ( N D - l ) )  
GC TC 15C 

GC TC 15C 

IF I L IC IT .GT.0 )  GO TO 238 
C e L T X  = - l . O / R A T I U ( N D - l )  
GC T C  14C 

XCLC = x 
C R P T I C  = R b T I O ( N C - 1 )  
K T R I G  = 1 

C R P T I C  = S C R T ( A B S ( O R P T I 0 ) )  
GO TC 15C 

233 DELTX = -O.2*TOLR 

2 3 5  I F  ( 4 8 S ( P A T I G ( N D - l ) ) . G T . 1 . O / T O L R )  GO T O  242 

2 3 P  I F  (4~S(PATIO(ND-l)).LT~lOOO~O) GO TO 2 5 1  

CELTX = C . l / O R A T I O  
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24C I F  ( B R A T I O o G E - 0 . 4 5 )  GO TO 2 4 1  
rF (46S(FATIO(ND-T))oLToORATIO) GO TO 2 4 1  
IF ( 1 I M I T . E Q o O )  GU  TI2 2 4 8  
DELTX = Z.O*DELTX 
GC T C  14C 

GC TC 2 5 1  
2 4 1  X = XOLD 

2 4 2   I F   ( N C o L E . 2 )  GO TO 2 4 5  
I F   ( L I M I T o G T . 0 )  GO TC! 1 2 4 5  
I F  (A@S(F(ND-2))oGEoOoS*TOLRQ) GO TO 2 4 3  
L I P I T  = 1 
P C L Y l N D - 2 )  = O 0 5 * T O L R Q * C A ( N D - 2 )  

24 '3   RATICCNC-2)  = P O L Y ( N C - l ) / P O L Y ( N D - 2 )  
A R L T I C  = A @ S ( R A T I O ( N C - l ) / R A T I O ( N D - 2 ) )  
I F   ( K T R I C o E S . 2 )  GO TO 2 4 4  
I F  ( b R A T I O o L T o 0 . 5 3 )  GO TO 2 4 8  
IF  ( I X M o E Q o O )  GO TO 226 
C l R A T  = b R 4 T I O  
XPN = x 
K T R I G  = ,? 
GC TC 2 4 7  

2 4 4  IF ( b R A T I O o L T o O o 5 3 )  GO TO 2 4 8  
I F  ( A R A T I O o G T o A B S ' { O D R A T ) )  GO TO 1 2 4 4  
I F   ( L I M I T o E C . 0 )  GO TO 2 2 8  
GC TC 2 4 f  

1 2 4 4  X = XPN 
K T R I G  = C 
I X P  = 0 
CELTX = C o C  

GO TC 1 4 5  

c "- T H E   M U L T I P L I C I T Y  OF  THE ROOT  AND I T S   V A L U E   W I T H I N   T O L R  ARE 
c -" NOW AT H I N C o  E S T I M A T E   T H E  X L O C A T I O N  OF THE  NEXT ROOT. 

2 4 5  TF (L@S1FOLY(3)).GTodBS(POLY(l))) GO TO 2 4 8  
1 2 4 5   I F  ( I X M o E Q o O )  GO TO 2 4 8  

2 4 6   I X P  = 0 
2 4 7   D E L T X  = i . O * ( X X  - X )  

L T R I G  = C 
G C  T C  14C 

XPLLT = FULT 
2 4 e  W L T  = N c  - 1 

I F  (NCEG - P U L T o L T - 3 )  GO TO 250 
R A  = l . O / ( X P U L T  + l . O ) * R A T I O ( N D )  
X I  = X - l . O / R A  
I'F ( L f ! S ( F A ) o L T o O o I )  X I  = X 

25C X = X - l o O / R A T I O ( M U L T )  
GC T C  2 5 5  

2 5 1  NC = 1 
252  CULT = NE 

X I  = x 
c "- NUPEER  THE  ROOTS  AND D I V I D E  THEM  OUT OF THE  POLYNOMIAL. 

2 5 5  CC 270 K = l r P U L T  
3 = J + 1  
X R C C T ( J 1  7 X * S C A L E  
V R C C T ( J )  = 0.0 

60 



N = h-1 
I F  (N.EC.1) GO T O  265  
DC 260 1 ~ 2 9 N  

26C A ( I )  = A ( I )  + X * A [ I - l )  
265 X R ( J )  = 1.0 + X * A f N ) / A ( N + l )  
27C Y R f J I  = C O O  

GC TC 19  
272  X = X X  

GC TC 2 7 P  
2 7 5   I R E b L  = -1 
27C X = X - EECTX 
27e Y = S C R T ( A B S ( P O C Y t 1 ) ) ) :  
2ec CALL  COPPLX 

I F  ( I R E A t m L T o 2 )  GO TO 19 
I R E A L  = C 
GC TC 2 5 2  

57C C l L L  CED 
lOCC  FCRCbT ( 1 3 / ( 3 D 2 4 . 1 6 )  1 
l O l C  FCRPPT ( / / 25Xc78HERROR  THE  DEGREE  OF  THE  POLYNOMIAL  IS L E S S  T 

XHAh CNE. THERE  bRE NO ROOTS. 1 

x 1cc. 1 

X I h  CRDEF I F  REAC I N  ROWS. / /  (2X,5024.16)) 

l 0 2 C  FCRCbT  ( / /37Xs,55HERROR --- T H E  PROGRAM IS ONLY  DIMENSIONED  FOR N = 

103C F C R P b T   ( l H 1 / / 1 / 3 1 X , 7 0 H T H E   I N P U T   P O L Y N O M I A L   C O E F F I C I E N T S .   T H E Y  ARE 

GC TC 5 
EhC 

SLPRCUTIhE  RPOLY 

c "- THIS I S  THE E A S I C   R O U T I N E  FOR F I N D I N G   T H E   V A L U E  OF A REAL 
c "- NL'PCER  PCLYNOMIAL AND I T S   D E R I V A T I V E S .   P (  I ARE  THE  POLYNOYIAL 
c "- AKC I T S   C E R I V A T I V E   V A L U E S   N O R M A L I Z E D   B Y   B ( N ) .  

C O U P L E   P P F C I S I O N  A ,  A R A T I O ?  e ,  CA, CRATIO,  DI I 3 2 9  FKI PI  POLY, 0 ,  
X R P ,  RATIO,   RRATIO,   SCALE9 X, XLAST,   XPT  XPNt   XPOLY,  XR, 
X XRCCT9 'I, YPc  YPOLY,  YR,  YROOT 

CCCCCh'   /FOLYN/  ARATIO,  D, DELTX, D X ?  D29 FK, I ,  I N K ,   I R E A L ,  
1 I T R I G ,  IW, J ,  J T R I G ,  L, L I M I T ,   L T R I G ,  M ,  MLI M U L T t  N.9 NC, NO, 
2 NCEG,  NCRV,  NEXP,  NEXPS, NK, NM, NUM?  OARAT9 Q, SCALE9  SRAT.10, 
3 TCLI ,   TCLIQ,   TOLR,   TOLRQ,  X, X I 9  XLAST,  XMULT,  XOLD, XPN, YI 
4 A ( 1 C O ) r  B ( 1 0 0 ) r   C A ( 1 0 0 ) t   C R A T I O ( 1 0 0 ) r   P ( 1 0 0 ) ~   P O L Y ( 1 0 0 ) r   R A ( 1 0 0 ) r  
5 R b T I C ( l C O ) ,   R R A T I O ( 1 0 0 1 ,   X P ( 1 0 0 ) r   X P O L Y ( 1 0 0 ) r   X R ( 1 0 0 1 ?   X R O O T ( 1 0 0 1  
6 , ' Y P ( 1 0 0 ) ,   Y P O L Y ( 1 0 0 ) .   Y R ( 1 0 0 1 ,   Y R O O T ( 1 0 0 )  

3 5   P t h C R V + l )  = 1.0 
L = P  

NC = KEXFS - NEXP 
I F  ( L o E C o N - 1 )  GO TO 37 
N)r = h C  

L = L - I  
I F  (L.EC.0) GO T O  37 
NV = hM 4 h C  
GC TC 36 

rF (C.EC.O) GO TI! 45 

3 C  EF ~ b @ S ( E l L + l l / C b ~ N D R V ) ~ ~ G T ~ ~ ~ O O l * 8 ~ O * * N ~ * T O L R Q ~  GO TO 37 
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3 7 1 = 1  
3 e  I F  (I.EC.L+~) GO TO 42 

P ( h C R V + l  I = P ( N D R V + l ) * R (  I )  
I 1  - I 
NC = KC 

P ( h ' C R V + l )  = P ( N D R V + l ) * X  
I F  f 1.EC.L) GO TO 4 1  
I = I + 1  
NY = NM t hC 
GC! TC 39 

I = I + 1  
GC TC 38  

3 5  IF ( b @ S ( E ( I + l ) / B ( I I ~ ) o G T ~ O ~ O 0 1 * 8 , 0 * * N M * T O L R Q ~  GO TO 40 

4C P ( N C R V + l )  = P t N D R V + l I * X / B ( I + l )  + 1.0 

41  P ( h C R V + l )  = P ( N O R V + l ) / R ( I + l )  + 1.0 
4 2  IF ( L o E C o C )  GO TO 4 5  

P ( h C R V + l I  = P ( N D R V + l I * X * * ( M - L )  

C b ( N C R V + l )  = B ( L + l )  
NCRW 5 NCRV + 1 
IF (KCRV.GT.ND) RETURN 

4 5   P G L Y ( N D R L + l )  = P ( N D R V + l I * B ( L + l )  

4 E  )r = C - 1  
oc 49 1=19C 
FK f K -hDRV - I  + l  

GC TC 35 
ENC 

4 5  B ( I )  = B(I)*FM 

SC'PRCUTIhE  COMPLX 

c "- T H I S   S U B R O U T I N E   C O N T A I N S   T H E   A N A L Y S I S   P R O C E D U R E S   F O R   C O M P L E X  
c -" RCCTSo 

DCL 'PLB  PPECIS ION AI A R A T I O p  B 9  C A T   C R A T I O t   D T  D29 F K T  PI POLY9 Q 9  

X R b 9  R A T I C T   R R A T I O v   S C A L E 9  X 9  X L A S T T  XP, XPNT  XPOLYT  XR9 
X XRCCT. V 9  YPc  YPOLY9  YR9  YRCOT 

CCCPCh  /FOLYN/   &RATIO*  0 9  D E L T X T  0x9 029 FK9 I 9  INK, I R E A L 9  
1 I T R I G t  IHr J T  J T R I G t  L T  L I M I T 9   L T R I G T  M I  M L T   M U L T T  N T  N C T   N O T  
2 N C E G r   N E R V I   N E X P T   N E X P S T  N K T  N M c  NUMI OARAT9 Q T  SCALE9  SRATIO,  
3 T C L I ,   T C L I Q T   T O L R T   T O L R Q T   X C  X I 1  XLASTT  XMULTt   XOLD9  XPN9  Y9  
4 b ( 1 C O ) r  R(100)~ C A ( 1 0 0 ) r   C R A T 1 0 ( 1 0 0 ) ~   P ( 1 0 0 ) r   P O L Y ( 1 0 0 ) 9   R A ( l O O ) ,  
5 R P T I C ( ~ C O ) T   R R A T I O ( 1 0 0 ) C   X P ( 1 0 0 ) r   X P O L Y ( 1 0 0 ) 9   X R ( 1 0 0 ) ~   X R O O T ( 1 0 0 )  
6 r Y P ( 1 O O ) r   Y P O L Y ( ~ O O ) T   Y R ( 1 0 0 ) ~   Y R O O T ( 1 0 0 )  

c "e T H E   F I R S T  X E S T I M A T E   F O R   T H E   F I R S T   C O M P L E X  ROOT IS SOME L O C A L  
C --- W I h I C O M  CF T H E   A B S O L U T E   V A L U E   O F   P O L Y ( X ) .   L E T   T H E   1 S T  Y E S T I M A T E  
c "- E C C l L  THE SQUARE  ROOT  OF  POLY(X) .  
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! I .  

I 

2 9 C   J T R I C  = 1 
I T R I G  = C 
I X C  = 0 
MC = 2 

2 9 5   L T R I C  = C 

31C B(I)= A ( I )  
t'= NCEG 
NCRV= 0 

30C DC 310 I x l r N  

3 2 c   C A L L  C P C L Y  
3 5 1  IF (JTRIC.GE.2)  GO TI? 3 6 0  

IF (ABS(~P(l)).LT.TOLI.AND~ABS(YP(l))~LT~TOLI) GO TO 3 6 0  

c "- NEU X AND Y VALUES ARE CETERMINEO  WITH A 3 TERM  COMPLEX 
c i" TAYLCRS  SERIES. 

X% 4 I X P C L Y ( 2 ) / B ( N ) ) * * 2  - ( Y P O L Y ( Z ) / B ( N ) ) * * 2  + 2 0 O * ( Y P ( l ) *  
X Y P C L Y ( 3 )  - X P ( l ) * X P O L Y ( 3 ) ) / B ( N )  

X X P C L Y ( 3 ) 1 ) / B ( N )  
Y C  = 2.0*(XPOLY(2)*YPOLY(2)/B(N) - ( X P ( l ) * Y P O L Y ( 3 )  + Y P ( l ) *  

P H I  = A T t N E ( Y Q p X Q 1  
I F  (PHI .LT .O.0 )   PHI  = 6 . 2 8 3 1 8 5 3  + P H I  
P H I  = P H I I 2 . 0  

X C  = H Y P * C C S ( P H I  1 
YC = F Y P * S I K ( P H I )  
D X T  = X P C L Y ( Z ) / B ( N )  
D Y T  = Y P C L Y ( Z ) / B ( N )  
D Z T  = ( X C  - D X T ) * * Z  + ( Y Q  - D Y T ) * * 2  
OZT2 = ()cQ + DXT )**2 + ( Y Q  + D Y T ) * * 2  
IF (CZT.LE.DZT2) GO TO 3 5 2  
xc  = - X C  
YE = -YC 
D Z T  = 0 2 1 2  

3 5 2  XKT = X C  - CXT 
YHT 9 YC - CYT 
X C T  = X P C L Y ( 3 ) / B ( N )  
YCT = Y P C L Y ( 3 ) / B ( N )  
0 = X C T * * 2  + Y D T * * 2  
HX = ( X H l * X D T  + Y N T * Y D T ) / D  
HY = (YNT*XDT - XNT*YOT )/D 

HYP 9 ( X C * * 2  + Y 0 * * 2 ) * * 0 . 2 5  

I F  ~ P ~ S ~ k X / X ~ ~ L T ~ O ~ l * T O L I ~ A N D ~ A B S ~ H Y / Y I ~ L T ~ O ~ l * T O L I ~  GO TO 3 6 0  
r F  ( b P S ( k X ) . L T . l . O )  GO T O  3 5 7  
I F  ( P E S O  1 oGT.O.1) GO TO 3 5 6  
H X  = P X / t B S ( H X ) * O . l  
GC TC 3 5 7  

3 5 6  IF ( b E S ( k X / X ) . G T . 0 . 5 )  HX = 0 . 5 * H X * A B S ( X / H X )  
3 5 7   I F   ( b R S ( k Y ) . L T . l . O )  GO T O  3 5 9  

I F  ( b @ S  {b 1 oGT.O.1) GO TO 3 5 8  
HY = H Y / t B S ( H Y ) * O . l  
G C  TC 3 5 5  

3 5 E   I F   ( P R S ( k Y / Y ) , G T . O . S )  HY = O.S*HY*ABS(Y/HY)  
3 5 s  x = x + kX 

Y= Y t k Y  
GC TC 30C 

c C" STATEPENTS 360 THROUGH 5 3 5  COVER T H E   R A T I O  OF D E R I V A T I V E S  
c "- Ir'ETFCC FCR COMPLEX  ROOTS. 
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c " WHEh L I M I T  = 1 9  POLYIND-1 )   HAS  ROUNOOFF  L IMITATIONS.  

37C L I P I T  = 1 
IF (JTRIEmEO.1)  GO TO 375 

c "- WHEh L I M I T  = 4 9  POLY(ND)   HAS  GREATER  ROUNDOFF  L IMITATIONS-  

r F  ( A B S ( ~ P ( N D ) ) . G T . ~ . ~ * T O L I Q ~ O R ~ A B S ( Y P ~ N ~ ) ) O G T ~ ~ ~ * T O L I ~ )  GO TO 380 
L I P I T  = 4 
GC T C  5 1 2  

NC = ND 1 
GC TC 4 8 2  

CALL  SCALER 
IF (NK.EC.0)  GO TU 3 8 2  

375 I F  (hC.GT.hCEG/E) GO TO 380 

38C IF (JTRIC.EC.2)  GO TO 3 8 2  

X = X/ l6 .0CO**NK 
Y = Y/16eOCO**NK 
J T R I G  = i 
GC TC 30C 

3 8 2  IF ( b @ S ( N P ( N D - l )   ) e L T . O . S * T O L I Q )  X P ( N D - 1 )  = 0 o 5 * T O L I Q  
I F  ( b E S ( V P ( k D - 1 )   ) . L T e O o 5 * T O L I Q )  Y P ( N D - 1 )  = 0 * 5 * T O L I Q  
0 ( X P f h C - 1 )  )**2 + ( Y P ( N D - 1 1 ) * * 2  
P C L Y ( H 0 - 1 )  = D S Q P T ( D ) * D A B S ( C A ( N D - l ) )  
IF ( b @ S ( r P ( N D ) ) o L T . O o S * T O L I O )   X P ( N D 1  = 0 . 5 * T O L I Q  
IF f P E S ( ~ P ( ~ D ) ) . L T o 0 . 5 * T O L I Q )  Y P ( N D 1  = 0 * 5 * T O L I Q  
D l  = ( X P ( N C ) ) * * 2  + ( Y P ( N D ) ) * * 2  
P C L Y ( k D )  = D S P R r ( O l ) * D A B S ( C A ( N D ) )  
R b T I C f N O - 1 )  = P O L Y ( N D ) / P O L Y ( N D - l )  
I F   ( h C . L E . 2 . 0 R o L I ~ I T . G T . 0 )  GO TO 3 8 5  
IF ( b @ S ( r P ( N D - 2 ) ) . L T . O e 5 * T O L I Q )  X P ( N D - 2 )  = O o 5 * T O L I Q  
IF ( A O S ( k P ( h ' D - 2 )   ) . L T - O o S * T O L I Q )   Y P ( N D - 2 )  = 0 o 5 * T O L I Q  
P C L Y ( N D - 2 )  = D S Q R T ( ( X P ( N D - 2 ) ) * * 2  + (YP(ND-2))**2)*DARS(CA(ND-2)) 
R A T I C t N C - 2 )  = P O L Y ( N C - l ) / P O L Y ( N D - Z )  

A R b T I C  = R A T I O ( N C - l ) / R A T I O ( N C - 2 )  
IF ( L T R I C . N E - 0 )  GO TI! 3 8 5  

IF ( b R A T I O o L T . O . 4 5 )  GO TO 440 
IF ( b @ S ( X P ~ N D - 2 ) ) . L T ~ O . 6 * T O L I Q . A N D . A B S ( Y P ( N D ~ 2 l ~ ~ L T ~ ~ ~ 6 * T O L I Q ~  

x G C  TC 3 e 5  
IF ( A R A T I O o G T . l o 0 )  GO TO 4 5 5  

3 8 5   P C L Y ( N D + l )  = D S Q R T ( ( X P O L Y ( N D + 1 ) ) * * 2  + ( Y P O L Y ( N D + 1 ) 1 * * 2 1  
R A T I C C N C l  = POLY ( N D + l ) / P O L Y ( N D )  
A R b T I C  = R d T I O ( N C ) / R d T I O ( N D - l )  
R R b T I C ( K C - 1 )  = IXPINC)*XP(ND-l)+YP(NG)*YP(ND-l))/D*CA(ND)/CA(ND-l) 
C R b T I G ( R C - 1 )  = (YP(ND)*XP(ND-l)-XP(ND)*YP(ND-l))/D*CA(ND)/CA(ND-l) 
C3 = C R R t T I C ( N D - 1 )  )*e2 + ( C R A T I O ( N 0 - 1 )  )**2 
R R L T I C ( N C 1  = ~ X P ~ N D + 1 ~ * X P ~ N D ~ + Y P ~ N D + l ~ * Y P ~ N D ~ ) / D l * C A ~ N D + l ~ / C A ~ N D ~  
C R b T I O ( N C )  = ( Y P ( N D + l ) * X P ( N D )  -XP(ND+l)*YP(ND))/Dl*CA(ND+l)/CA[ND) 
C 2 =   I R R A T I C ( N D ) ) * * Z   + ( C R A T I O ( N D ) ) * * Z  
J T R I C  = i 
I F   ( L T R I C  1 3 8 9 9 3 8 7 r 3 9 5  

3 8 7  IF ( ITRIC .EC.1 )  GO TO 5 0 5  
I F  (bRATIOmLT.1.0)  GC TO 460 
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c A" I F  f R b T I O  IS GREATER  THAN ONE WHERE L I M I T  = 11 THE  PRESENT 
c -" P C I N T   V E F Y   L I K E L Y  IS BETWEEN TWO CLOSE  ROOTS.  THE  FOLLOWING 
c "- STbTEPEFi l 'S  STEP IN A S P I R A L  TO  LOWER A R A T I O e  IF A R A T I O  IS 
c "e GREbTER THbN ONE  WHERE L I M I T  = 1 9  P O S I T I V E   A N A L Y S I S  I S  NOT 
c *" P O S S I E L E .  I N  AN ATTEMPT  TO  PNALYZE  WITHOUT  THE L I P I T  SOME STEPS 
c "- ARE T b K E h  I N  T H I S   C A S E  TOO. HOWEVERT I T  IS USUALLY  NECESSARY  TO 
C "- D I V I C E   C l T  CNE ROOT  bT  THE  REST  COORDINATES WHEN L I M I T  = 1. 

3 8 5  IF ( b R A T I O . L T e 0 . 4 5 )  GO TO 490 
39C S R P T I C  = SCRT~RATIO(ND)*RATIO(ND-l)) 

IF ISRATIO.LT.1.OT  SRATIO = l e 0  
395 IF ( t T R I C . E C . 1 )  GO TO 4 0 5  

I F  (LTRIE.EQ.2)  GO TC 410 
IF I L T R I C o G T e 2 )  GC TO 415  
x x  f x 
YY = Y 

4 C C  L T R I G  = 1 
ISIGh = C 
cax = ARLTIC 
X = X + C e l / S R A T I O  
GC TC 30C 

4 C 5   L T R i G  = 2 
CAY = A R C T I O  

Y = Y + C.T/SRATiO 
GC T C  30C 

XCCN = ( C A X  - O A Y 1 / 0 4 X  
YCCN = ( C A X  - A R P T I O ) / O A X  

X = X - C . l / S R A T I U  

41C Y = Y - C e l / S R A T I O  

ZCCK i SCRT(XCON**Z + YCON**Z) 
THETAO = A T P N Z ( Y C 0 N q X C O N )  - CTHETA 
x p c t e  = x 

411 THETb = [ T H E T A  
YPCLE = \ 

IF (ZCON.GT.1.414)   SRATIO = lO.O*SRATIO 

DELTX = PAC*COS(THETb + THETAO) 
CELTY = F A C + S I N ( T H E T b  + THETAO) 

R4C 3 O . C * P B S ( T H E T A ) / S R A T I O  

412 CPPbT = C A X  
413 X L l S T  = X 

YLPST = Y 
X = XPOLE + OELTX 
Y = YPOLE + DELTY 
L T R I G  = L T R I G  + 1 
CC T C  30C 

IF I4RATIO.GT.OARAT) GO TO 420 
4 1 5   I F  (bRATIO.LE.0.45) GO TO 490 

I F  ( L T R I G e ~ E . 3 . 0 R o A R b T I O . G E . 1 , D )  GO TO 418 
IF ( S R 4 T I O e L T ~ 1 0 0 0 ~ 0 e O R ~ A R A T I O ~ L T ~ O A R A T - O e O 1 )  GO TO 418 
L T R I G  = C 
OC TC 48C 

THETb = THETA + CTHETA 

DELTX = PAC*COS(THETA + THETAO) 
DELTY = F A C * S I N ( T H E T A  + THETAO) 
CAPPT = P R A T I O  
GC TC 4 1 2  

4 1 8  IF (LTRIG.GT.~O~ GO T O  425 

RllC 9 O m 6 * 4 9 S ( T H E T A ) / S R A T I O  
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4 2 C  IF ( L I M I T . C T . O ~ O R . L T R I G . E Q . 3 )  GO TO 4 2 5  
X = X L A S T  
Y = VLAST 
O T F E T I  = -CTHETA 
L T R I G  = -1 
GC TC  30C 

4 2 5  X = X X  
Y = Y Y  
I F  (L IMI7 .GT.O)  GO TO 5 1 2  
L T R I G  = i 
I S I G K  = I S I G N  + 1 
I F  ( I S I G F  - 2 )  4 3 0 ~ 4 3 2 ~ 4 3 4  

43C  THETbO = TPETAO - 3=0*DTHETA 
GC T C  411 

GC TC 413 

TWET6C = TFETAO - 6.0*DTHETA 

GC TC 411 

GC T C  411 

L I C I T  = 1 

4 3 2  THETPC = TPETAO + 6 * 0 * D T H E T A  

4 3 4  I F  ( I S I G h . L E . 3 )  GO TG 4 3 8  

S R P T I C  = lO .O*SRATIO 

43e   THETPC = TBETAO + 3.0*DTHETA 

44C NC = ND - 1 

I F  (JTRIC.EQ.1)  GO TQ 4 5 0  
I F  ( ~ ~ S ( ~ P ~ N D ~ ~ ~ ~ ~ L T ~ ~ ~ ~ * T O L I Q . A N D . A B S ~ Y P ~ N D ~ ~ ~ ~ ~ L T O O ~ ~ * T O L I Q ~  

X G C  TC 4 5 0  
L I C I T  = C 
D = ( X P ( h D - 1 )  ) + * 2  + ( Y P ( N D - 1 ) ) * * 2  
R R I T I @ ( N C - l )  = ( X P ( N C ~ * X P ( N D - l ) + Y P ( N D I * Y P ( ~ D - l ) ) / D ~ C A ( ~ D ) / C A ( N D - l )  
C R A T I C ( N C - 1 )  = ( Y P ( N C ) * X P I N D - 1 ) - X P ( N D ) * Y P o ) / D * C A ( N O ~ / C A ~ N D - l ~  
03 = ( R R C T I O ( N D - 1 ) ) * * 2  + ( C R A T I O ( N D - 1 ) ) * * 2  
X = X - F R b T I O ( N O - 1 ) / 0 3  
Y = Y + CRbTIO(NC-l)/D3 

4 5 C  J T R I G  = i 
GC T C  30C 

J T R X G  = i 
GC TC 39C 

4 5 5  NE = RD - 1 

4 6 C   I F  ( b R A T I C  - 0 . 4 5 )  4 9 0 ~ 4 9 0 ~ 4 7 0  
4 7 C   I F  ( L I M I T . E C . U l  GO TO 4 8 0  

GC T C  39C 

NE = N D  + 1 

DC 4 8 4  I = l , V  
FK = K - N C R V  - I + 1 

GC T C  32C 

48C I F   ( h C o G ' l o N C E G / 2 )  GO TO 4 9 8  

4 8 i C = C - l  

4 8 4   B ( I )  = B ( I ) * F K  

4 9 C   I F  (PATIC(NC-l).LTo5oO/TOLI) GO TO 4 9 5  
X = X + C * 2 * T O L I  
Y = Y + C.Z+TOLI  
G C   T C  3CC 

495  L T R I G  = C 
IF (RATIC(NC-l).GTol.O/TOLI) GO TO 520 
I F   ( L I M I T . G T . 0 )  GO TC 5 0 0  

4 9 E  X = X - R P A T I O ( N D - l ) / C 3  
Y =  V + C P A T I O ( N D - l ) / C 3  
GC TC 3CC 
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1 I 50C I F  ( b B S ( R A T I G ( N O - l ) ) . L T ~ l O O O ~ O ~  GO TO 5 1 2  
XCLC = x 
YCLC = Y 
O.RbTIC = R b T I O ( N C - 1 )  
I T R I C  = 1 

.i 

DELTY = C . l / O R A T I O  
I F  (Y.LT.O.0) OELTY = -DELTY 
Y = Y + CBLTY 
GC TC 3CC 

5 0 5  I F  (4RATIU.GE.0 .45)  GO TO 5 1 0  
I F  ( L I M I T . E C m 0 )  GO TC! 5 2 0  
I F  ( b R A T I O . G T . S Q R T ( O R A T I 0 ) )  GO TO 510 

Y = 'Y + CFLTY 
GE TC 30C 

51C X = XCLC 
Y = Y O L C  

C E L T Y  = f.O*DELTY 

c "- CHECK  BACK  TU  SEE IF ANOTHER  REAL  ROOT  HAS  BEEN  FOUND, 

5 1 2  IF ( b @ S ( ~ ) . G T . l O . O * T O L I )  GO TO 5 1 5  
NC = 1 
I R E b L  = i 
R E T L R h :  

c "- C I V I O E  OUT CNLY ONE ROOT SINCE  THE  ROOT  POINT  COULD  NOT BE 
c "- LCCBTED P S  WELL AS DESIRED.  

5 1 5  CULT = 1 
X I  = x 
Y I  = Y 
GC TC 54C 

52C I F  (FOLY(NC-l).LT.POLY(ND+l)) GO TO 5 2 5  
I F  ( h O . G T . 2 )  GO TO 5 2 3  
NC = h:D t 1 
L T R I G  = -1 
GC TC 4 8 2  

GC T C  30C 

I R E b L  = C 
x x =  x 
NKC? ND 
RETLRh 

5 2 e  X = > X  
NC = hNC 
I R E I L  = C 

5 2 3  NC = h.0 - 1 

5 2 5  IF ( 4 8 S ( ~ ) . G T . l O . O * T O L I )  GO TO 5 3 0  

c -" THE P U L T I P L I C I T Y  OF THE  ROOT  AND I T S   V A L U E   W I T H I N   T O L I  ARF 
c "- NCk b T   H I N C .   E S T I M A T E   T H E  2 L O C A T I O N  OF THE  NEXT  CLOSEST ROOT 
C --- THAT IS hOT THE COMPLIMENT  OF THE PRESENT ROOT. 

53C  MULT= N O - 1  
XIJLLT= CL L T  
I F  (hCEG - 2*MULT.LT.3) GO TO 5 3 5  
R A T I C R =   F R b T I O ( N C ) / ( X M U L T  + 1.0) 
R A T I C I z  C R b T I O ( N O I / ( X H U L T  + 1.0) + X H U L T / ( 2 . 0 * Y )  
O X  7 R A T I U R * Y / ( Y * ( R A T I O R * * 2  + R A T I O I * * 2 )  + R A T I O I )  

i 
t 
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X I  = X - cx 
Y I   S Q R l ( b B S ( ( R A T I O R * Y  + R A T I O I * D X ) * ( D X * D X +   Y * Y ) / ( R A T I O R * Y  - 

X RAT I O I * C X  1 )  1 
535 D 2 =   ( R R A T I C ( M U L T ) ) * * P  + ( C R A T I O ( M U L T ) ) * * 2  

X =  X - P F A T I O ( M U L T ) / G 2  
Y= Y + C F A T I O t M U L T ) / O Z  

c 4" NUPEER  THE  ROOTS  AND DIVIDE THEM  OUT OF T H E   P O L Y N O M I A L   F I Q S T  
C --- AS CCPPLEX FiUMBERS  TO F I N O   T H E  COMPLEX  RESIDUAL.  THEN GO BACK AND 
C -*- D I V I C @  CLT  THE  ROOT AND I T S  COMPLIMENT  TOGETHER SO THAT  ONLY  REAL 
c "- NC'PPER ALGEeRA IS U S E D .  

54C CC 5 6 5  K t l t C U L T  
DC 545  I S l t R  
R ~ ( T )  = ! ( I )  

5 4 5  C d ( 1 )  = C O O  
J= J + I  
X R C C T t J )  = X*SCALE 
Y R C C T ( J 1  7 Y*SCALE 
N= h-1 
CC 5 5 0  I z 2 r N  
XPh- R A ( I )  + X * R d ( I - l )  - Y * C A ( I - l )  
c b ( r ~ =  C C C I I  + X*CA(I -TI  + Y*RA(I-T) 

55C RA(I)r XFN 
X R ( J )  = ( R A ( N + l )  + X * R A ( N )  - Y * C A ( N ) ) / A ( N + l )  

555  Y R f J )  = ( C b ( N + l )  4 X * C A ( N )  + Y * R A ( N ) ) / A ( N + l )  
J= J + l  
X R C C T ( J )  = X*SCALE 
YRCCTCJ)  =-Y*SCALE 
N = h - l  
A ( 2 ) =  A ( 2 )  + 2 0 0 * b ( L ) * X  
I F  (h.EC.1) GO TO 5 6 2  
K =  H + 1 :  
CC 5 6 0  I = 3 r K  

56C A t I ) =  A ( I )  + 2 . O * A ( I - l ) * X  - A ( I - 2 ) * ( X * * 2  + Y * * 2 )  
562  X R ( J )  = 1.0 + ( A ( N + l ) * X  -. A ( N ) * ( X * * 2  + Y * * 2 ) ) / A ( N + 2 )  
565  Y R ( J ) r  0.0 

x- X I  

I F  IX.GT.10.0) X = 10.0 
I F   ( ( N + 1 ) / 2 . E O . N / 2 )   I R E A L  = 1 

~t y r  

RETLRh 
ErCC 

SL'CRCUTIFE  CPOLY 

c -" T H I I  IS THE B A S I C   R O U T I N E  FOR F I N D I N G   T H E   V A L U E  OF THE 
c "- P C L Y h C M I C L  AND I T S   D E R I V A T I V E S   I N  COMPLEX  NUMBERS. 



B 
1; 3 PCLI, T c L I a T   T O L R T  T O L R Q ~  x T   XI^ X L A S T ~  XMULTT XOLO, X P N T  y T  

I 

! 

4 A ( 1 C O ) r   B ( 1 0 0 ) r   C A ( 1 0 0 ) r   C R A T I O ( 1 0 0 ) r  P ( 1 0 0 ) r  P O L Y ( 1 O O ) r   R A ( 1 0 0 l p  
5 RbTIC(1CO)r R R A T I 0 ( 1 0 0 ) *   X P ( 1 0 0 ) T   X P O L Y I l O O ) *   X R ( 1 0 0 ) ~   X R O O T ( 1 0 0 )  
6 , Y P ( 1 0 0 ) r   Y P O L Y ( ~ O O ) T   Y R ( 1 0 0 ) ~   Y R O O T ( 1 0 0 )  

3 2 C   X P ( h C R V + l I =  1.0 
Y P ( h C R V + I  I =  0.0 
L= pl 
IF (C.EC.0) GO TO 345 
NC = K E X F S  - NEXP 
IF (LoECoN-1)  GO TO 328 
N P  = hC 

L= L-1  
IF (1.EC.O) GO T O  340 
NPI = h“ + NC 
GC T C  3 2 5  

3 2 5  IF (A@S(E(L*1~/CA(NDRV))oGT~OoOOOOl*8~O**NM*TOLIQ~ GO TO 3 2 8  

3 2 E  I = 1 
33C IF ( I . E C . L * l )  GO TO 3 4 0  

X P ( h C R V + l )  = X P I N D R V + l ) * B ( I )  
I 1  = I 
NC = hC 

X P h Z   X P ( h O R V + l ) * X  - Y P ( N D R V + l ) * Y  
Y P ( N C R V + l ) =   X P ( N C R V + l ) * Y  + Y P ( N D R V + l ) * X  
XP(h ‘CRV+I  1= XPN 
IF ( I o E C o L  1 GO TO 3 3 8  
T=I+l 
NPI = hM i K C  
GC TC 3 3 2  

Y P ( I \ ‘ C R V + l )  = X P ( N D R V + l ) * Y  + Y P ( N D R V + l ) * X  
XP(h ;CRV+ l )  = X P N / B (  I*l) + 1.0 
I = I + l  
GC TC 33C 

3 3 2  IF ~ P @ S ~ ~ ~ I + 1 ~ / R ~ I I ~ ~ ~ G T ~ O o O O O O l * 8 ~ O * * N M * T O L I Q ~  GO TO 3 3 5  

335   XPN = X P ( N C R V + l ) * X  - Y P ( N D R V + l ) * Y  

33E X P ( N C R V + l )  = X P ( N D R V + l ) / B (  I+l) + 1.0 
34C I F  ( L o E C o t ’ )  G O  TC 3 4 5  

Y P ( N C R V + l )  = Y P ( N C R V + l ) / R ( L + l )  
t f L = P I - L  
DC 342 1 x l ~ P L  
XPR = X P t N C R V + l ) * X  - Y P ( N D R V + l ) * Y  
Y P ( H C R V + l )  = X P ( N D R V + l ) * Y  + Y P I N D R V + l ) * X  

Y P C L Y ( N C F V + l )  = Y P ( N C R V + l ) * R ( L + l )  
GC T C   3 4 f  

3 4 5  Y P C L Y ( N C F V + l )  = Y P ( N D R V + l )  
Y P ( h C R V + I )  = Y P ( N G R V + l ) / B ( L + l I  

3 4 C   X P C L Y I N C P V + l )  = X P ( N G R V + l ) * B ( L + l )  
C A ( N C R V + l )  = B ( L + l )  
NCRV= N C F V + l  

3 4 2  XP ( h C R V + l )  = XPN 

IF (hCRVoGToND)   RETURN 
3 4 e  P =  P-1 

DC 3 5 0  I= l rF ”  
FK= h - N C F V - I  + 1 

35C B ( I ) =  B ( I ) * F K  
GI: TC 32C 
E R C  
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SUERCCTIhE  SCALER 

c "- T H I C   S U B R O U T I N E   S C A L E S  THE POLYNOMIAL  SO THE  LOCAL  ROOT IS 
c "- OF CRCER ONE- 

DUUPLE P P e C F S I O N  A t  A R A T I O t  B 9  C A T   C R A T I O t  D t  D29 F K t  P t  POLYI Q t  
X R b r  RATIO,   RRATIUT  SCALES'  X t   X L A S T T   X P T   X P N t   X P O L Y T   X R t   X R O O T T   V T  
X YF,  Y P C L Y T   Y R t   Y R f l O T  

C C P P C N   / F O L Y N /   A R A T I O V   D T   D E L T X t   D X 1  029 FKT I T  I N K T  I R E A L t  
1 I T R I G t  I W T  J p  J T R I G t  L T  L I M I T 9   L T R I G T  M T  M L T  M U L T t  N t  N C T   N D t  
2 hCEG,  NCRVT N E X P t   N E X P S T  NKT N M T   N U M t   O A R A T t  Q t  S C A L E t   S R A T I O T  
3 T C L I t   T C L I Q p   T O L R t   T O L R Q t   X t   X I 9   X L A S T t   X M U L T T   X O L O t   X P N T  Y T  
4 A ( 1 C C ) t   B ( 1 0 0 ) r   C A ( 1 0 0 ) t   C R A T I O ( 1 0 0 ) p   P ( 1 0 0 ) r   p O L Y ( 1 0 0 ) ~   R A ( 1 0 0 ) t  
5 R b T I C ( 1 C O ) r   R R A T I O ( 1 0 0 ) p   X P ( 1 0 0 ) r   X P O L Y ( 1 O O ) t   X R ( 1 0 0 ) t   X R O O T ( 1 0 0 )  
6 , Y P ( l C O ) r   Y P O L Y ( ~ O O ) T   Y R ( 1 0 0 ) t   Y R O O T ( 1 0 0 )  

NK = C 
I R K  = 1 
I F  ( IREAL.LE.0) GO TC ? O  
XPK = 0 . 2 6 0 6 7 3 7 6 * A L O G ( A B S ( X ) )  
GC TC 2 0  

1 C  XPN = 0 . 1 8 0 3 3 6 8 8 * d L O G ( X * * 2  + Y* *2 )  
2C I F  (XPN.CT'oO.0) GO T O  30 

XPK = -XFN 
rhlc = -1 

3C DC 4C I = l p 6  
fF IXFN.LToO.5.OR.IA@S(NC + (NDEG*(NK + I N K ) ) / 2 ) . G T . 2 0 )  GO TO 50  
NK 7 NK + I N K  

4 c  XPh = XPh - 1.0 
5C I F  (hK.EC.0) RETURN 

NC = ( N C E G * N K I / 2  
NEXP = MEXP + NK 
SCbLE  16*ODO**NEXP 
DC 60 I = l ~ h  
N)I = NK*11-1) - K C  

RETLRN 
ENC 

6C A ( I )  T A ( 1 ) / 1 6 o O C O * * N M  

St 'ERCUTIbE  CEO 

c -" IN T H I S   S U B R O U T I N E  THE L A S T  TWO ROOTS  ARE  CALCULATED  DIRECTLY 
C "- ANC ALL THE ROOTS  ARE  PRINTEC. 

E C L P L E   P R E C I S I O N  A t  d R A T I O 9   B 9   C A I   C R A T I O V  01 0 2 9  f K 9  P t  POLY9 01 
X R b r   R A T I O 9   R R A T I O t   S C A L E 9   X t   X L A S T V   X P p   X P N t   X P O L Y p   X R t  
X XRCCTt  Y t  Y P p   Y P O L Y I   Y R t   Y R C O T  

C C P P C h   / F O L Y N /   A R A T I O t  Dt DELTX, 0 x 1  0 2 9  FKt I t  I N K 9   ! R E A L 9  
f I T R I G t  IWt J t  J T R I G t  L t  L I M I T 9   L T R I G V  MI  M L t   M U L T t  N9 N C q  N D t  
2 N C E G T   N C R V t   N E X P T   N E X P S t   N K t  NM9  NUV9  OARAT9 Q p  SCALE9  SRATIOV 
3 T C L I ,   T C L I G t   T O L R t   T O L R Q p   X 1   X I 9   X L A S T V  XF1ULT9 XOLOt  XPN9 Y t  
4 A ( 1 C C ) t  B ( 1 0 0 ) ~   C A ( 1 0 0 ) t   C R A T I O ( 1 0 0 ) t   P ( 1 0 0 ) r   P O L Y ( 1 O O ) r   R A ( 1 0 0 ) T  
5 R b T I C ( 1 C O ) t   R R A T I f l ( l O 9 ) r   X P ( 1 0 0 ) r   X P O L Y ( l O O ) ,   X R ( 1 O O ) T   X R O O T ( 1 0 0 )  
6 r Y P ( 1 0 0 ) t   Y P O L Y ( 1 0 0 ) 9   V R ( 1 0 0 ) r   Y R O O T ( 1 0 0 )  

57C I F  ( h - 2 )  60095759580 
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i 

c "- WHEF THERE  4RE  ONLY TWO ROOTS L E F T *   I T  IS E A S I E R  TO SOLVE  FOR 
c "- THEC  CIRECTLY.  
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Examples 

T H E   I N P U T   P O L Y N O M I A L   C O E F F I C I E N T S .   T H F Y  ARE I N  ORDER I F   R E A 0   I N  ROWS. 

O~1OOOOCQOOCOOOOOOD 0 1   - 0 . 4 9 9 9 8 4 9 9 9 9 9 9 9 9 9 9 0   0 2   0 ~ 9 9 9 9 6 0 0 0 0 0 0 0 0 0 0 0 0  03 -0.9999399999999999D  04  0~499~6000OOOOOOOOD 05 
-Ce9999CCOOCCOOOOOOD 0 5  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  * * * *** T H E   C O M P U T E 0   R O O T S   O F   T H E   P O L Y N O M I A L  *** * * * 
**lS*******,*******~~************************************************************************************** * * * * * * P O L Y N O M I A L   R E M A I N D E R  WHEN 

* * 
* RCCT * R E A L   P A R T   I M A G I N A R Y  * ROOT WAS D I V I D E D   O U T  * hUCBER * OF ROOT  PART  OF  ROOT * * 

* 
* * * R E A L   P 4 R T   I M A G I N A R Y   P A R T  * * * * * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  * * * * 
* 1 * 0.100000C000050 0 2  0 .  * 0.8881784197000-15 0. * 2 * 0.100000C00005D  02 0. 

* 
* -0.1221245327090-14 0. * * -0.9992007221630-15 0. * 4 * 0 ~ 1 0 0 0 0 0 0 0 0 0 0 5 0   0 2  0 

* 
* 5 * 0.9998999998120 01  0. 

* 0.205391259556D-13 0. * * 0. 0. * * * * * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* 3 * 0. ~oooooaooooso 0 2  0. 

Exact  polynomial: P(x) = (x - 10) (x - 9.999) 4 

Comment: This  problem  illustrates  the point that good resolution  capability is maintained near multiple roots when the multi- 
ple root  in a group is found first. 



T H E   I N P U T   P O L Y N O M I A L   C O E F F I C I E N T S .   T H E Y   A R E  I N  ORDER IF READ I N  ROWS. 

0~100COCOOOCOOOOOOD 01 -0~4999990000000000D 01 0~8995960000000000D 01 -0~6999950000000000D 01 0~19999800000000000 01 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  * * 
* *** THE  COMPUTED  ROOTS  OF  THE  POLYNOMIAL *** * 

**l*****************************4************************************************************************* 
* * 

* * * * * * 
* RCOT * R E A L   P A R T   I M A G I N A R Y  * ROOT WAS DIVIOED OUT * 

* 
* hUPBER * OF ROOT  PART OF ROOT * * * * R E A L   P A R T   I M A G I N A R Y   P A R T  

* * * * * * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *4 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * 
* 1 0.9999995999800 00 0. * -0. 0. * 

2 * 0.9999995999000 00 0. * -0.6661338147750-15 0. * * 3 * 0.2000000000000 01 0. * 0. 0. * * 4 * 0.999990000039D 00 0. * 0.  0. * * * * * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* P O L Y N O M I 4 L   R E M A I N D E R  WHEN 

Exact polynomial: P(x) = (x - $(x - 0.99999)(x - 2) 

Comment: This problem  again shows  good resolution  near a multiple  root. However, in  this  case the  decision between 
x = 1.000000 and x = 0.999993 for the location of the  multiple  root was barely  possible or maybe  even lucky. 
When the correct choice was  made, the computed root  values were quite good. 



T H E   I N P U T   P O L Y N O Y I A L   C O E F F I C l E N T S .   T H E Y  ARE I N  ORDER I F  R E A D  I N  ROWS. 

0.100COCOOOC0000OOD 01 -0.50000C99999999990 01 0.9000040000000000D 01 -0.7000050000000000D 01 0.20030200000000000 01, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  * * 
* *** T H E   C O M P U T E D   R O O T S   O F   T H E   P O L Y N O M I A L  *** * * * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  * * * * * * * P O L Y N O M I A L   R E M A I N D E R  WHEN * 

* RCCT * R E A L   P A R T   I M A G I N h R Y  * ROOT WAS D I V I D E D  OUT 
O F   R O O T   P A R T   O F   R O O T  

* 
* b U Y R E R  * * * * * * R E A L   P A R T   I M A G I N 4 R Y   P A R T  * * * 
*~1* * * *# * * * . * , * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *~* * * * * * * * * * * *~* * * * * * * * * *~* * * * * * * * * * * * * * * * * * * * * * * * * *  

* 
* * * * 
* 1 * 0~100000C66680D 01 0. * -0.3330669073880-15 0 .  * * 2 * 0~100000~66680D 01 0. * 0.188737914186D-14 0. * 
* 3 * 0.200000COOOOOO 01 0. * 4 * 0.9999966664000 00 0 .  

0 .  0. * * 0. 0. * * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  * * * 

Exact  polynomial: P(x) = (x - 1)2(x - 1.00001)(x - 2) 

Comment: This  problem is similar  to the  previous one. In this  case  the wrong choice between x = 1.000000 and 
x = 1.0000067 was made for  the  location of the multiple  root. Of course,  the  root values are not as good as 
they would have been i f  the correct decision  could have  been  made;  but note that  the  centroid of the  three roots 
in  the  group is quite  accurate. 



T H E   I N P U T   P O L Y N O M I A L   C O E F F I C I E N T S .   T H E Y  ARE I N  ORDER I F  READ I N  ROWS. 

0.10COOCOOOCCOOOOOD  01 -0~40000C00000000000 01  0.60CCCOl99999999QD  01 -0~4000004000000003D 01 0~1003002000001000D 01 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* *** THE  COMPUTED  ROOTS OF THE  POLYNOMIAL *** * * * 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  * * * * 
* R C O T  * REAL  PART * LUlveER * * * * * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  * * * 
* 1 * 0.999999999840D 00 0.999999999333D-03 * -0.9002862256570-16  0.433680301634D-18 * 

* 
* 2 * 0.9999999998400 00 -0.999999999333D-03 * -0.111022302463D-15 0. * * 3 * 0.999999599840D  00  0.9999999993330-03 * 0.313903891732D-14 -0m640736713725D-12 * * 4 * 0.9999999998400 00 -0.999999599333D-03 * 0.321964677141D-14 0. * * * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* 

* * * POLYNOMIAL  REMAINDER WHEN 
I M A G I N A R Y  

* * ROOT WAS D I V I D E D  OUT 
PART OF ROOT 

* * * * R E A L   P A R T   I M A G I N A R Y   P A R T  * * 
OF ROOT 

* 

Exact  polynomial: P(x) = (x - 1 + 0.00l i )  2 (x - 1 - 0.OOli) 2 

Comment: This problem is an illustration of multiple roots in the complex plane. The problem also shows capability to dis- 
tinguish complex roots  from nearly real  roots. 



T H E   I N P U T   P O L Y N O M I A L   C O E F F I C I E N T S .   T H E Y  ARE I N  ORDER I F  R E A 0   I N  ROWS. 

0.10000CCOOC0000UOD 01  -0 .80000000000000000  01  0 .25000001999999990  02  -0 .40000012000000000  02  0 .35030024000001000 02 
-C~1600C0200C0003990  02  0~30000C60000029990  01 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  * * 
* *** THE  COMPUTED  ROOTS  OF  THE  POLYNOMIAL *** * * * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  * * * * * * 

* RCCT * R E A L   P A R T  
* * * F U P 8 E R  * O F   R O O T   P A R T  OF ROOT * * 

* * * R E A L   P A R T   I M A G I N L R Y   P A R T  * * 
* * * * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  * * * * 
* 1 * 0.9990765817760 00 0. * 0.2442490654180-14 0. * 
* 3 * 0.9996877264080 00 -0.1481630401670-02 * -0.3430589146090-13 0. 
* 2 * 0.9996877264080 00 0.1487630401670-02 * -0.3314258028320-13  0.7134669653560-16 * 
* 4 * 0 ~ 3 0 0 0 0 0 C 0 0 0 0 0 0   0 1  0. 

* 
* 5 * 0.1000773982700  01  0 .9538712732370-03 * 0. 

* -0.1998401444330-14 0. * 
* 6 * 0~1000773982700   01   -0 .9538712732370-03  * 0. 

0. 

* * 0. t 

**l*********************************~********************************************************************* 
* * 

P O L Y N O M I A L   R E M A I N D E R  WHEN 
I MAG I N A R Y  ROOT WAS DIVIDED OUT 

* 

Exact polynomial: ~ ( x )  = (x - l)(x - 1 + 0,001  i)2(x - 1 - 0.001 i) (x - 3) 2 

Comment: This is the  previous  problem with a real  root between the complex roots. If the  program could get the multiple 
root first, the  resolution would be quite good; but the  program is structured  to find real  roots  first. Since the 
polynomial was  found to change sign in the vicinity of the  root  group  near x = 1.0, a real root is known to  exist. 
The real  root could not  be resolved with the  ratio of derivatives  theory s o  a root was taken out near  the  center of 
the group. 



T H E   I N P U T   P O L Y N O P I A L   C O E F F I C I E N T S .   T H E Y  ARE I N  ORDER I F  READ I N  ROWS. 

0.10CCOCOOOCOOOOOOD  01 -0. -0~100C001000001000D 07 -0. 
-C . -0.10000COOOOOOOOOOD  01 

0.100300100000LOOOO 07 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* *** THE  COMPUTE0  ROOTS  OF THE POLYNOMIAL *** * * * 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  * * * * * * * POLYNOMIAL  REMAINDER WHEN * 
* RCOT * R E A L   P A R T   I M A G I N A R Y  * ROOT WAS DIVIDED OUT * * hUCRER * OF  ROOT  PART OF ROOT * * * * * R E A L   P A R T   I M A G I N A R Y   P A R T  * * * * * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  * * * * 
* 1 * 0;100000c00000D-02 0. * -0.781597009336D-13 0. * * 2 * -0.100000COOOOOD-02 0. * -0.222044604925D-15 0. * * 3 * -0.100000c00000D 01 0. * -0.2220446049250-14 0. * * 4 0.100000000000~ 01 0. * -0.111022302463D-15 0. * * 5 * 0~100000000000D 04 0. * 0. 0. * * 6 * -0~1OOOOOCOOOOOD 04 0. * 0. 0. * * * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Exact  polynomial: P(x) = (x + O.OOl)(x - O.OOl)(x + l)(x - l)(x + lOOO)(x - 1000) 

Comment: This problem shows good root accuracy over a wide  range of root size. This is accomplished by (1) polynomial 
scaling and (2) extracting the lower magnitude roots first. 



APPENDIX D 

OUTLINE OF THE BASIC LOGICAL STEP PROCESS FOR THE  RATIO 

OF DERIVATES ANALYSIS FOR  REAL ROOTS 

(1) First x t ry  at a given  root 
m = 2  
If IP(1) I < TOLRQ  and IP(2) I < 10 x TOLR, ND = ND + 1. 

(a) ARATIO 5 0.45  (Appear  to be at right  root  multiple, (ND - l), and  zeroing in. ) 
(1) If IRATIO(ND - 1) I > 5/TOLR, too  close  to the root  for good analysis. 

(2) zf 1/TOLR < I RATIO(ND - 1) I < 5/TOLR, make the f i n a l  root  correction 

(2) Each new x t ry  at a given  root 

Back  away  to  get  in  the 1/TOLR to 5/TOLR range. 

and  divide the root out of the polynomial. 

(a) LIMIT = 0, ( IP(ND - 1) I is valid)  make x correction  by 
l/RATIO(ND - 1) to  get  closer  to the root. 

(b) LIMIT = 1, ( IP(ND - 1) I is not  valid. It is set to TOLRQ, and it is 
assumed  to  have  greater  magnitude  than the actual value. ) Set 
KTRIG = 1. 
(1) ~f I RATIO(ND - 1) I < 1000, use  present x value as root 
(2) If I RATIO(ND - 1) I > 1000, step away from the present x to a 

point where a valid  RATIqND - 1) is reached so the 
l/RATIO(ND - 1) final  correction  can be made  to  give a better 
root value. 

(b) 0.45 < ARATIO < 1.0. (Either at too low ND or  too far from  the  root yet. ) 

(3) E I/TOLR > I RATIO(ND - 1) I 

(1) If ND < NDEG. Increase ND by 1 and  come  through the analysis  again at 

(2) Lf ND = NDEG. Not yet  near enough to  root. Step closer by  l/RATIO(ND) 
the  same x. 

correction. Set JTRIG = 2. 
(c) ARATIO 2 1.0. (In general,  between  roots. ) From  figures 2 and 3, it can be 

seen that root  candidates  occur on either side of such  an x location. Set 
IMX = 1 to  indicate  the first of the two is being  investigated  by  stepping  along 
the  real  axis with LTRIG the step  counter.  Step with doubled step  size until: 
(1) ARATIO < 0.45 

(a) LIMIT = 0. This point is a root. Do normal  analysis. 
(b) LIMIT = 1. Check  the  other point of symmetry  in  the  effort  to  try  to 

determine which is the  root. 
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(2) LTFUG = 8 
(a) IMSURE = 0. Give up the  search  for a real root  here. 
(b) IMSURE = 1. A real root is lmown to  exist in  this  region. Continue 

stepping  until a XHIGH or XLOW limit is reached and then step  in 
the other direction. 
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